File size: 11,742 Bytes
e07cbe2
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
 
 
 
933f3ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07cbe2
 
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
 
 
 
 
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
 
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
 
 
 
 
 
 
 
933f3ac
e07cbe2
 
 
 
933f3ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07cbe2
 
 
 
 
 
 
 
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
 
 
933f3ac
e07cbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_14130/269978020.py:6: DtypeWarning: Columns (7,10) have mixed types. Specify dtype option on import or set low_memory=False.\n",
      "  tools = pd.read_csv(\"../data/tools.csv\")\n"
     ]
    }
   ],
   "source": [
    "import pickle\n",
    "import pandas as pd\n",
    "from pathlib import Path\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Make t_map"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tools = pd.read_csv(\"../data/tools.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n",
       "       'trader_address', 'deliver_block', 'error', 'error_message',\n",
       "       'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n",
       "       'info_utility', 'vote', 'win_probability', 'title', 'currentAnswer',\n",
       "       'request_time', 'request_month_year', 'request_month_year_week'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tools.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pickle\n",
    "t_map = tools[['request_block', 'request_time']].set_index('request_block').to_dict()['request_time']\n",
    "\n",
    "with open('../data/t_map.pkl', 'wb') as f:\n",
    "    pickle.dump(t_map, f)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open('../data/t_map.pkl', 'rb') as f:\n",
    "    t_map = pickle.load(f)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Markets"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['id', 'currentAnswer', 'title'], dtype='object')"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "fpmms = pd.read_csv(\"../data/fpmms.csv\")\n",
    "fpmms.columns\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>currentAnswer</th>\n",
       "      <th>title</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0x0020d13c89140b47e10db54cbd53852b90bc1391</td>\n",
       "      <td>No</td>\n",
       "      <td>Will the Francis Scott Key Bridge in Baltimore...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07</td>\n",
       "      <td>No</td>\n",
       "      <td>Will FC Saarbrucken reach the final of the Ger...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c</td>\n",
       "      <td>Yes</td>\n",
       "      <td>Will the pro-life activists convicted for 'con...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0x0094fa304017d5c2b355790e2976f769ea600492</td>\n",
       "      <td>No</td>\n",
       "      <td>Will the Hisense U8K be considered a top-tier ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>0x00b03e86def06f5afb3b5219df72df758c96ec87</td>\n",
       "      <td>Yes</td>\n",
       "      <td>Will the ChatGPT app for Android exceed 1 mill...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3020</th>\n",
       "      <td>0xff866fd6092f8cc779fed6480e8a0a00740c4685</td>\n",
       "      <td>Yes</td>\n",
       "      <td>Will Nvidia's market value exceed $2 trillion ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3021</th>\n",
       "      <td>0xff8fedb76e6659f9da2505b28e86ea3a7db282e7</td>\n",
       "      <td>Yes</td>\n",
       "      <td>Will UFC face a boycott due to its $100M Bud L...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3022</th>\n",
       "      <td>0xff94627786768f5d94f7e5687de131b34c4b0c0d</td>\n",
       "      <td>Yes</td>\n",
       "      <td>Will there be another volcanic eruption in Gri...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3023</th>\n",
       "      <td>0xffd0b522ff00ffaec575cc628d1bb4ea37346fd7</td>\n",
       "      <td>No</td>\n",
       "      <td>Will the manslaughter trial for James Crumbley...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3024</th>\n",
       "      <td>0xffd6f34459ff26040e9cf1d9e4d9aaa7026a9683</td>\n",
       "      <td>No</td>\n",
       "      <td>Will YouTube's subscribe button light up whene...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>3025 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                                              id currentAnswer  \\\n",
       "0     0x0020d13c89140b47e10db54cbd53852b90bc1391            No   \n",
       "1     0x003ae5e007cc38b3f86b0ed7c82f938a1285ac07            No   \n",
       "2     0x004c8d4c619dc6b9caa940f5ea7ef699ae85359c           Yes   \n",
       "3     0x0094fa304017d5c2b355790e2976f769ea600492            No   \n",
       "4     0x00b03e86def06f5afb3b5219df72df758c96ec87           Yes   \n",
       "...                                          ...           ...   \n",
       "3020  0xff866fd6092f8cc779fed6480e8a0a00740c4685           Yes   \n",
       "3021  0xff8fedb76e6659f9da2505b28e86ea3a7db282e7           Yes   \n",
       "3022  0xff94627786768f5d94f7e5687de131b34c4b0c0d           Yes   \n",
       "3023  0xffd0b522ff00ffaec575cc628d1bb4ea37346fd7            No   \n",
       "3024  0xffd6f34459ff26040e9cf1d9e4d9aaa7026a9683            No   \n",
       "\n",
       "                                                  title  \n",
       "0     Will the Francis Scott Key Bridge in Baltimore...  \n",
       "1     Will FC Saarbrucken reach the final of the Ger...  \n",
       "2     Will the pro-life activists convicted for 'con...  \n",
       "3     Will the Hisense U8K be considered a top-tier ...  \n",
       "4     Will the ChatGPT app for Android exceed 1 mill...  \n",
       "...                                                 ...  \n",
       "3020  Will Nvidia's market value exceed $2 trillion ...  \n",
       "3021  Will UFC face a boycott due to its $100M Bud L...  \n",
       "3022  Will there be another volcanic eruption in Gri...  \n",
       "3023  Will the manslaughter trial for James Crumbley...  \n",
       "3024  Will YouTube's subscribe button light up whene...  \n",
       "\n",
       "[3025 rows x 3 columns]"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "fpmms"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_14130/371090584.py:1: DtypeWarning: Columns (2) have mixed types. Specify dtype option on import or set low_memory=False.\n",
      "  delivers = pd.read_csv(\"../data/delivers.csv\")\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "(262750, 12)"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "delivers = pd.read_csv(\"../data/delivers.csv\")\n",
    "delivers.shape\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(244242, 6)"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "requests = pd.read_csv(\"../data/requests.csv\")\n",
    "requests.columns\n",
    "\n",
    "requests.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(243228, 22)"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tools.shape\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/l_/g22b1g_n0gn4tmx9lkxqv5x00000gn/T/ipykernel_14130/4197935432.py:1: DtypeWarning: Columns (7,10) have mixed types. Specify dtype option on import or set low_memory=False.\n",
      "  tools = pd.read_csv(\"../data/tools.csv\")\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n",
       "       'trader_address', 'deliver_block', 'error', 'error_message',\n",
       "       'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n",
       "       'info_utility', 'vote', 'win_probability', 'title', 'currentAnswer',\n",
       "       'request_time', 'request_month_year', 'request_month_year_week'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tools = pd.read_csv(\"../data/tools.csv\")\n",
    "tools.columns\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(244623, 22)"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tools.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "autogen",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}