weekly-analysis / app copy.py
arshy's picture
initial commit
0869b01
raw
history blame
5.37 kB
import gradio as gr
import pandas as pd
tools = pd.read_csv("./data/tools.csv")
# all_trades = pd.read_csv('./data/all_trades_profitability.csv')
demo = gr.Blocks()
INC_TOOLS = [
'prediction-online',
'prediction-offline',
'claude-prediction-online',
'claude-prediction-offline',
'prediction-offline-sme',
'prediction-online-sme',
'prediction-request-rag',
'prediction-request-reasoning',
'prediction-url-cot-claude',
'prediction-request-rag-claude',
'prediction-request-reasoning-claude'
]
def set_error(row):
if row.error not in [True, False]:
if not row.prompt_response:
return True
return False
return row.error
def get_error_data():
tools_inc = tools[tools['tool'].isin(INC_TOOLS)]
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
error['error_perc'] = (error[True] / (error[False] + error[True]))*100
error['total_requests'] = error[False] + error[True]
return error
def get_error_data_all(error):
error_total = error.groupby('request_month_year_week').agg({'total_requests': 'sum', False: 'sum', True:'sum'}).reset_index()
error_total['error_perc'] = (error_total[True] / error_total['total_requests'])*100
# convert column name to string
error_total.columns = error_total.columns.astype(str)
# format all values to 4 decimal places for error_perc
error_total['error_perc'] = error_total['error_perc'].apply(lambda x: round(x, 4))
return error_total
error = get_error_data()
error_all = get_error_data_all(error)
print(error_all.head())
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")
with gr.Tabs():
with gr.TabItem("🔥 Error Dashboard"):
with gr.Row():
gr.Markdown("This plot shows the percentage of requests that resulted in an error.")
with gr.Row():
# plot
with gr.Column():
gr.LinePlot(
value=error_all,
x="request_month_year_week",
y="error_perc",
title="Error Percentage",
x_title="Week",
y_title="Error Percentage",
height=400,
show_label=True
)
gr.Markdown("This plot shows the percentage of requests that resulted in an error.")
# Dropdown for selecting the tool
sel_tool = gr.Dropdown(
value="prediction-online",
choices=INC_TOOLS,
label="Select a tool"
)
plot_tool_error = gr.LinePlot(
title="Error Percentage",
x_title="Week",
y_title="Error Percentage",
render=False
)
# Dropdown for selecting the week
sel_week = gr.Dropdown(
value=error['request_month_year_week'].iloc[-1],
choices=error['request_month_year_week'].unique().tolist(),
label="Select a week"
)
plot_week_error = gr.BarPlot(
title="Error Percentage",
x_title="Tool",
y_title="Error Percentage",
render=False
)
def update_tool_plot(selected_tool):
filtered_data = error[error['tool'] == selected_tool]
# convert column name to string
filtered_data.columns = filtered_data.columns.astype(str)
# conver error_perc to 4 decimal place
filtered_data['error_perc'] = filtered_data['error_perc'].apply(lambda x: round(x, 4))
print(filtered_data.head())
return {
"x": filtered_data['request_month_year_week'].tolist(),
"y": filtered_data['error_perc'].tolist(),
}
def update_week_plot(selected_week):
filtered_data = error[error['request_month_year_week'] == selected_week]
filtered_data.columns = filtered_data.columns.astype(str)
filtered_data['error_perc'] = filtered_data['error_perc'].apply(lambda x: round(x, 4))
print(filtered_data.head())
return {
"x": filtered_data['tool'].tolist(),
"y": filtered_data['error_perc'].tolist(),
}
sel_tool.change(fn=update_tool_plot, inputs=sel_tool, outputs=plot_tool_error)
sel_week.change(fn=update_week_plot, inputs=sel_week, outputs=plot_week_error)
with gr.Row():
plot_tool_error.render()
with gr.Row():
plot_week_error.render()
with gr.TabItem("ℹ️ About"):
with gr.Accordion("About the Benchmark", open=False):
gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")
demo.queue(default_concurrency_limit=40).launch()