import torch | |
import gradio as gr | |
from PIL import Image | |
import scipy.io.wavfile as wavfile | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
caption_image = pipeline("image-to-text", | |
model="Salesforce/blip-image-captioning-large", device=device) | |
def caption_my_image(pil_image): | |
semantics = caption_image(images=pil_image)[0]['generated_text'] | |
return semantics | |
demo = gr.Interface(fn=caption_my_image, | |
inputs=[gr.Image(label="Select Image",type="pil")], | |
outputs=[gr.Textbox(label="Image Caption")], | |
title="@GenAILearniverse Project 8: Image Captioning", | |
description="THIS APPLICATION WILL BE USED TO CAPTION THE IMAGE.") | |
demo.launch() |