Spaces:
Sleeping
Sleeping
Fazendo upload do app
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
3 |
+
import cv2
|
4 |
+
import re
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolo-v5.pt')
|
10 |
+
model.conf = 0.80
|
11 |
+
|
12 |
+
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-printed')
|
13 |
+
ocr = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-printed')
|
14 |
+
|
15 |
+
def extract_coordinates(img, model):
|
16 |
+
results = model(img)
|
17 |
+
cordinates = results.xyxy[0][:, :-1]
|
18 |
+
return cordinates
|
19 |
+
|
20 |
+
def read_plate_number(results, frame, cordinates):
|
21 |
+
plate_numbers = []
|
22 |
+
n = len(results)
|
23 |
+
|
24 |
+
for i in range(n):
|
25 |
+
row = cordinates[i]
|
26 |
+
if row[4] >= 0.5:
|
27 |
+
xmin, ymin, xmax, ymax = map(int, row[:4])
|
28 |
+
plate = frame[ymin:ymax, xmin:xmax]
|
29 |
+
|
30 |
+
pixel_values = processor(images=plate, return_tensors="pt").pixel_values
|
31 |
+
generated_ids = ocr.generate(pixel_values)
|
32 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
33 |
+
|
34 |
+
cleaned_text = clean_plate_number(generated_text)
|
35 |
+
plate_numbers.append(cleaned_text)
|
36 |
+
|
37 |
+
return plate_numbers
|
38 |
+
|
39 |
+
def clean_plate_number(text):
|
40 |
+
cleaned_text = re.sub(r'[^a-zA-Z0-9]', '', text)
|
41 |
+
|
42 |
+
if any(char.isalpha() for char in cleaned_text) and any(char.isdigit() for char in cleaned_text):
|
43 |
+
plate_number = cleaned_text[-7:]
|
44 |
+
return plate_number
|
45 |
+
|
46 |
+
return ""
|
47 |
+
|
48 |
+
def perform_ocr_on_image(image):
|
49 |
+
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
50 |
+
results = model(img)
|
51 |
+
cordinates = extract_coordinates(img, model)
|
52 |
+
|
53 |
+
if len(cordinates) == 0:
|
54 |
+
return "Nenhuma placa encontrada."
|
55 |
+
|
56 |
+
plate_number = read_plate_number(results.pred[0], img, cordinates)
|
57 |
+
|
58 |
+
if plate_number:
|
59 |
+
return plate_number[0].lower()
|
60 |
+
else:
|
61 |
+
return "N茫o foi poss铆vel reconhecer a placa."
|
62 |
+
|
63 |
+
interface = gr.Interface(fn=perform_ocr_on_image,
|
64 |
+
inputs=gr.Image(type="pil"),
|
65 |
+
outputs="text",
|
66 |
+
title="Reconhecimento de Placas de Autom贸veis",
|
67 |
+
description="Envie uma imagem e receba o n煤mero da placa.")
|
68 |
+
|
69 |
+
interface.launch()
|