artbreguez commited on
Commit
5e0745f
1 Parent(s): f684503

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +191 -0
app.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from pricegenerator.PriceGenerator import PriceGenerator, uLogger
3
+ from datetime import datetime, timedelta
4
+ import gradio as gr
5
+ import pandas as pd
6
+ import pickle
7
+ import matplotlib.pyplot as plt
8
+ import mplfinance as mpf
9
+ import numpy as np
10
+ from PIL import Image
11
+ import io
12
+ from sklearn.preprocessing import StandardScaler
13
+ import requests
14
+ import time
15
+
16
+ def download_model():
17
+ # URL do arquivo do modelo
18
+ model_url = "https://huggingface.co/artbreguez/BinaryOptionsXGB/resolve/main/eurusd.pkl?download=true"
19
+
20
+ # Baixar o arquivo do modelo
21
+ response = requests.get(model_url, stream=True)
22
+
23
+ # Verificar se o download foi bem-sucedido
24
+ if response.status_code == 200:
25
+ # Salvar o arquivo
26
+ with open('eurusd.pkl', 'wb') as f:
27
+ for chunk in response.iter_content(1024):
28
+ f.write(chunk)
29
+ print("Modelo baixado com sucesso!")
30
+ return True
31
+ else:
32
+ print("Erro ao baixar o modelo:", response.status_code)
33
+ return False
34
+
35
+ # Realizar o download do modelo
36
+ download_success = download_model()
37
+
38
+ if download_success:
39
+ with open('eurusd.pkl', 'rb') as f:
40
+ content = f.read()
41
+ with open('eurusd.pkl', 'rb') as f:
42
+ model = pickle.load(f)
43
+ else:
44
+ print("Download do modelo falhou.")
45
+
46
+
47
+ # model = load_model()
48
+
49
+
50
+ def generate_candle_image(df, predicao):
51
+ df['DateTime'] = pd.to_datetime(df['DateTime'])
52
+ df.set_index('DateTime', inplace=True)
53
+
54
+ prox_candle = pd.DataFrame(index=[df.index[-1] + pd.Timedelta(hours=1)])
55
+ prox_candle['Open'] = df['Close'].iloc[-1]
56
+
57
+ if predicao[0] == 1: # Predição positiva
58
+ prox_candle['Close'] = prox_candle['Open'] + 0.01
59
+ prox_candle['High'] = prox_candle['Open'] + 0.01
60
+ prox_candle['Low'] = prox_candle['Open']
61
+ else: # Predição negativa
62
+ prox_candle['Close'] = prox_candle['Open'] - 0.01
63
+ prox_candle['High'] = prox_candle['Open']
64
+ prox_candle['Low'] = prox_candle['Open'] - 0.01
65
+
66
+ prox_candle['Volume'] = 0
67
+
68
+ df_combined = pd.concat([df, prox_candle])
69
+
70
+ nans = [float('nan')]*len(df_combined)
71
+ cdf = pd.DataFrame(dict(Open=nans, High=nans, Low=nans, Close=nans), index=df_combined.index)
72
+ cdf.loc[df_combined.index[-1]] = df_combined.loc[df_combined.index[-1]]
73
+
74
+ mc = mpf.make_marketcolors(up='green', down='red')
75
+ s = mpf.make_mpf_style(marketcolors=mc)
76
+
77
+ fig, axlist = mpf.plot(df_combined, type='candle', volume=True, returnfig=True, ylabel_lower='Volume', title='EUR/USD Price Chart')
78
+ mpf.plot(cdf, type='candle', style=s, ax=axlist[0])
79
+
80
+ img_bytes = io.BytesIO()
81
+ plt.savefig(img_bytes, format='png')
82
+ img_bytes.seek(0)
83
+
84
+ img_pil = Image.open(img_bytes)
85
+
86
+ return img_pil
87
+
88
+
89
+ def predict(X_2d):
90
+ return model.predict(X_2d)
91
+
92
+
93
+ def generate_array(df):
94
+ features = df.drop(columns=['DateTime'])
95
+ scaler = StandardScaler()
96
+ normalized_features = scaler.fit_transform(features)
97
+ df_normalized = pd.DataFrame(normalized_features, columns=features.columns, index=df.index)
98
+ X = df_normalized.iloc[-1].values # Obtém apenas os valores dos recursos normalizados
99
+ X_2d = np.array(X).reshape(1, -1)
100
+ return X_2d
101
+
102
+
103
+ def calculate_bollinger_bands(df, period=20):
104
+ df['SMA'] = df['Close'].rolling(window=period).mean()
105
+ df['STD'] = df['Close'].rolling(window=period).std()
106
+ df['Upper'] = df['SMA'] + (2 * df['STD'])
107
+ df['Lower'] = df['SMA'] - (2 * df['STD'])
108
+ return df
109
+
110
+ def calculate_stochastic_oscillator(df, period=14):
111
+ low_min = df['Low'].rolling(window=period).min()
112
+ high_max = df['High'].rolling(window=period).max()
113
+ close_diff = df['Close'] - low_min
114
+ high_diff = high_max - low_min
115
+ stoch = close_diff / high_diff * 100
116
+ df['Stochastic'] = stoch
117
+ return df
118
+
119
+ def calculate_rsi(df, period=14):
120
+ diff = df['Close'].diff()
121
+ gain = diff.where(diff > 0, 0)
122
+ loss = -diff.where(diff < 0, 0)
123
+ ema_gain = gain.ewm(alpha=1/period, min_periods=period, adjust=False).mean()
124
+ ema_loss = loss.ewm(alpha=1/period, min_periods=period, adjust=False).mean()
125
+ rs = ema_gain / ema_loss
126
+ rsi = 100 - (100 / (1 + rs))
127
+ df['RSI'] = rsi
128
+ return df
129
+
130
+ def process_data(file_path):
131
+ with open(file_path, 'r') as f:
132
+ data = f.readlines()
133
+
134
+ data = [line.strip().split(',') for line in data]
135
+
136
+ df = pd.DataFrame(data, columns=['Date', 'Time', 'Open', 'High', 'Low', 'Close', 'Volume'])
137
+
138
+ numeric_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
139
+ df[numeric_columns] = df[numeric_columns].astype(float)
140
+
141
+ df['DateTime'] = pd.to_datetime(df['Date'] + ' ' + df['Time'])
142
+ df.set_index('DateTime', inplace=True)
143
+
144
+ df = calculate_bollinger_bands(df)
145
+ df = calculate_stochastic_oscillator(df)
146
+ df = calculate_rsi(df)
147
+ df.drop(['Date', 'Time', 'STD'], axis=1, inplace=True)
148
+ processed_file_path = file_path.replace('.csv', '_processed.csv')
149
+ df.to_csv(processed_file_path)
150
+
151
+ return df
152
+
153
+ def generate_graph_data():
154
+ uLogger.setLevel(0)
155
+
156
+ priceModel = PriceGenerator()
157
+ priceModel.precision = 5 # 5 casas decimais para maior precisão
158
+ priceModel.ticker = "EURUSD" # par de moedas EUR/USD
159
+ priceModel.timeframe = timedelta(hours=1) # intervalo de tempo entre os candles, 1 dia
160
+ priceModel.timeStart = datetime.today() - timedelta(days=1) # dados do último ano
161
+ priceModel.horizon = 24 # 24 candles, correspondendo a um dia de dados
162
+ priceModel.maxClose = 1.25 # Maior preço de fechamento, similar aos preços do EUR/USD
163
+ priceModel.minClose = 1.05 # Menor preço de fechamento, similar aos preços do EUR/USD
164
+ priceModel.initClose = None # Preço inicial aleatório dentro do intervalo (minClose, maxClose)
165
+ priceModel.maxOutlier = 0.01 # Máximo desvio para outliers, similar aos preços do EUR/USD
166
+ priceModel.maxCandleBody = None # Sem limite para o tamanho do corpo dos candles
167
+ priceModel.maxVolume = 500000 # Volume máximo, valor arbitrário
168
+ priceModel.upCandlesProb = 0.5 # Probabilidade de candle de alta de 50%
169
+ priceModel.outliersProb = 0.03 # Probabilidade de outliers de 3%
170
+ priceModel.trendDeviation = 0.0005 # Desvio para definir tendência, valor pequeno
171
+ priceModel.zigzag = 0.01 # Diferença entre pontos do indicador ZigZag
172
+ priceModel._chartTitle = "EUR/USD Price Chart" # Título do gráfico
173
+
174
+ priceModel.Generate()
175
+
176
+ priceModel.SaveToFile(fileName="eur_usd_prices.csv")
177
+
178
+ def generate_predictions():
179
+ generate_graph_data()
180
+ df = process_data('eur_usd_prices.csv')
181
+ df = pd.read_csv('eur_usd_prices_processed.csv')
182
+ x_d2 = generate_array(df)
183
+ prediction = predict(x_d2)
184
+ image = generate_candle_image(df, prediction)
185
+ return image
186
+
187
+ outputs = gr.Image(type='pil', label='label')
188
+ inputs = None
189
+ title = "Binary Options Predictor"
190
+ description = "This tool generates a simulated candlestick chart for EUR/USD. If the last candlestick is green, it indicates an upward trend, while a red candlestick suggests a downward trend."
191
+ gr.Interface(generate_predictions, inputs, outputs, title=title, description=description).launch(debug=True)