import random from pricegenerator.PriceGenerator import PriceGenerator, uLogger from datetime import datetime, timedelta import gradio as gr import pandas as pd import pickle import matplotlib.pyplot as plt import mplfinance as mpf import numpy as np from PIL import Image import io from sklearn.preprocessing import StandardScaler import requests import time def download_model(): # URL do arquivo do modelo model_url = "https://huggingface.co/artbreguez/BinaryOptionsXGB/resolve/main/eurusd.pkl?download=true" # Baixar o arquivo do modelo response = requests.get(model_url, stream=True) # Verificar se o download foi bem-sucedido if response.status_code == 200: # Salvar o arquivo with open('eurusd.pkl', 'wb') as f: for chunk in response.iter_content(1024): f.write(chunk) print("Modelo baixado com sucesso!") return True else: print("Erro ao baixar o modelo:", response.status_code) return False # Realizar o download do modelo download_success = download_model() if download_success: with open('eurusd.pkl', 'rb') as f: content = f.read() with open('eurusd.pkl', 'rb') as f: model = pickle.load(f) else: print("Download do modelo falhou.") # model = load_model() def generate_candle_image(df, predicao): df['DateTime'] = pd.to_datetime(df['DateTime']) df.set_index('DateTime', inplace=True) prox_candle = pd.DataFrame(index=[df.index[-1] + pd.Timedelta(hours=1)]) prox_candle['Open'] = df['Close'].iloc[-1] if predicao[0] == 1: # Predição positiva prox_candle['Close'] = prox_candle['Open'] + 0.01 prox_candle['High'] = prox_candle['Open'] + 0.01 prox_candle['Low'] = prox_candle['Open'] else: # Predição negativa prox_candle['Close'] = prox_candle['Open'] - 0.01 prox_candle['High'] = prox_candle['Open'] prox_candle['Low'] = prox_candle['Open'] - 0.01 prox_candle['Volume'] = 0 df_combined = pd.concat([df, prox_candle]) nans = [float('nan')]*len(df_combined) cdf = pd.DataFrame(dict(Open=nans, High=nans, Low=nans, Close=nans), index=df_combined.index) cdf.loc[df_combined.index[-1]] = df_combined.loc[df_combined.index[-1]] mc = mpf.make_marketcolors(up='green', down='red') s = mpf.make_mpf_style(marketcolors=mc) fig, axlist = mpf.plot(df_combined, type='candle', volume=True, returnfig=True, ylabel_lower='Volume', title='EUR/USD Price Chart') mpf.plot(cdf, type='candle', style=s, ax=axlist[0]) img_bytes = io.BytesIO() plt.savefig(img_bytes, format='png') img_bytes.seek(0) img_pil = Image.open(img_bytes) return img_pil def predict(X_2d): return model.predict(X_2d) def generate_array(df): features = df.drop(columns=['DateTime']) scaler = StandardScaler() normalized_features = scaler.fit_transform(features) df_normalized = pd.DataFrame(normalized_features, columns=features.columns, index=df.index) X = df_normalized.iloc[-1].values # Obtém apenas os valores dos recursos normalizados X_2d = np.array(X).reshape(1, -1) return X_2d def calculate_bollinger_bands(df, period=20): df['SMA'] = df['Close'].rolling(window=period).mean() df['STD'] = df['Close'].rolling(window=period).std() df['Upper'] = df['SMA'] + (2 * df['STD']) df['Lower'] = df['SMA'] - (2 * df['STD']) return df def calculate_stochastic_oscillator(df, period=14): low_min = df['Low'].rolling(window=period).min() high_max = df['High'].rolling(window=period).max() close_diff = df['Close'] - low_min high_diff = high_max - low_min stoch = close_diff / high_diff * 100 df['Stochastic'] = stoch return df def calculate_rsi(df, period=14): diff = df['Close'].diff() gain = diff.where(diff > 0, 0) loss = -diff.where(diff < 0, 0) ema_gain = gain.ewm(alpha=1/period, min_periods=period, adjust=False).mean() ema_loss = loss.ewm(alpha=1/period, min_periods=period, adjust=False).mean() rs = ema_gain / ema_loss rsi = 100 - (100 / (1 + rs)) df['RSI'] = rsi return df def process_data(file_path): with open(file_path, 'r') as f: data = f.readlines() data = [line.strip().split(',') for line in data] df = pd.DataFrame(data, columns=['Date', 'Time', 'Open', 'High', 'Low', 'Close', 'Volume']) numeric_columns = ['Open', 'High', 'Low', 'Close', 'Volume'] df[numeric_columns] = df[numeric_columns].astype(float) df['DateTime'] = pd.to_datetime(df['Date'] + ' ' + df['Time']) df.set_index('DateTime', inplace=True) df = calculate_bollinger_bands(df) df = calculate_stochastic_oscillator(df) df = calculate_rsi(df) df.drop(['Date', 'Time', 'STD'], axis=1, inplace=True) processed_file_path = file_path.replace('.csv', '_processed.csv') df.to_csv(processed_file_path) return df def generate_graph_data(): uLogger.setLevel(0) priceModel = PriceGenerator() priceModel.precision = 5 # 5 casas decimais para maior precisão priceModel.ticker = "EURUSD" # par de moedas EUR/USD priceModel.timeframe = timedelta(hours=1) # intervalo de tempo entre os candles, 1 dia priceModel.timeStart = datetime.today() - timedelta(days=1) # dados do último ano priceModel.horizon = 24 # 24 candles, correspondendo a um dia de dados priceModel.maxClose = 1.25 # Maior preço de fechamento, similar aos preços do EUR/USD priceModel.minClose = 1.05 # Menor preço de fechamento, similar aos preços do EUR/USD priceModel.initClose = None # Preço inicial aleatório dentro do intervalo (minClose, maxClose) priceModel.maxOutlier = 0.01 # Máximo desvio para outliers, similar aos preços do EUR/USD priceModel.maxCandleBody = None # Sem limite para o tamanho do corpo dos candles priceModel.maxVolume = 500000 # Volume máximo, valor arbitrário priceModel.upCandlesProb = 0.5 # Probabilidade de candle de alta de 50% priceModel.outliersProb = 0.03 # Probabilidade de outliers de 3% priceModel.trendDeviation = 0.0005 # Desvio para definir tendência, valor pequeno priceModel.zigzag = 0.01 # Diferença entre pontos do indicador ZigZag priceModel._chartTitle = "EUR/USD Price Chart" # Título do gráfico priceModel.Generate() priceModel.SaveToFile(fileName="eur_usd_prices.csv") def generate_predictions(): generate_graph_data() df = process_data('eur_usd_prices.csv') df = pd.read_csv('eur_usd_prices_processed.csv') x_d2 = generate_array(df) prediction = predict(x_d2) image = generate_candle_image(df, prediction) return image outputs = gr.Image(type='pil', label='label') inputs = None title = "Binary Options Predictor" description = "This tool generates a simulated candlestick chart for EUR/USD. If the last candlestick is green, it indicates an upward trend, while a red candlestick suggests a downward trend." gr.Interface(generate_predictions, inputs, outputs, title=title, description=description).launch(debug=True)