Spaces:
Runtime error
Runtime error
File size: 6,712 Bytes
302ee5a 0aec042 302ee5a 4ae264c 302ee5a 0aec042 302ee5a 4ae264c 302ee5a 0aec042 302ee5a 4ae264c 3fcc106 302ee5a 3fcc106 302ee5a 0aec042 302ee5a 0aec042 302ee5a 0aec042 302ee5a 0aec042 302ee5a 0aec042 302ee5a 4ae264c 0aec042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import chainlit as cl
from openai import AuthenticationError
from aicore.logger import _logger
from aicore.config import LlmConfig
from aicore.const import STREAM_END_TOKEN, STREAM_START_TOKEN, REASONING_START_TOKEN, REASONING_STOP_TOKEN
from aicore.llm import Llm
from ulid import ulid
import asyncio
import time
from utils import MODELS_PROVIDERS_MAP, PROVIDERS_API_KEYS, REASONER_PROVIDERS_MAP, check_openai_api_key, trim_messages
from settings import PROFILES_SETTINGS
DEFAULT_REASONER_CONFIG = LlmConfig(
provider="groq",
api_key=PROVIDERS_API_KEYS.get("groq"),
model="deepseek-r1-distill-llama-70b",
temperature=0.5,
max_tokens=1024
)
DEFAULT_LLM_CONFIG = {
"Reasoner4All": LlmConfig(
provider="mistral",
api_key=PROVIDERS_API_KEYS.get("mistral"),
model="mistral-small-latest",
temperature=0,
max_tokens=1024,
reasoner=DEFAULT_REASONER_CONFIG
),
"OpenAi": LlmConfig(
provider="openai",
api_key=PROVIDERS_API_KEYS.get("openai", ""),
model="gpt-4o-mini",
temperature=0,
max_tokens=1024,
reasoner=DEFAULT_REASONER_CONFIG
)
}
@cl.set_chat_profiles
async def chat_profile():
return [
cl.ChatProfile(
name="Reasoner4All",
markdown_description="A deepseek-r1-distill-llama-70b powered Reasoner for your favourite open-source LLMs",
icon="https://picsum.photos/200",
),
cl.ChatProfile(
name="OpenAi",
markdown_description="A deepseek-r1-distill-llama-70b powered Reasoner for closed source LLMs",
icon="https://picsum.photos/200",
)
]
@cl.on_settings_update
async def setup_agent(settings):
provider = MODELS_PROVIDERS_MAP.get(settings.get("Model"), "openai")
llm_config = LlmConfig(
provider=provider,
api_key=PROVIDERS_API_KEYS.get(provider) or settings.get("Api Key"),
model=settings.get("Model"),
temperature=settings.get("Temperature"),
max_tokens=settings.get("Max Tokens")
)
if settings.get("Use Reasoner"):
reasoner_provder = REASONER_PROVIDERS_MAP.get(settings.get("Reasoner Model"), "openai")
reasoner_config = LlmConfig(
provider=reasoner_provder,
api_key=PROVIDERS_API_KEYS.get(reasoner_provder) or settings.get("Reasoner Api Key"),
model=settings.get("Reasoner Model"),
temperature=settings.get("Reasoner Temperature"),
max_tokens=settings.get("Reasoner Max Tokens")
)
llm_config.reasoner = reasoner_config
llm = Llm.from_config(llm_config)
llm.session_id = ulid()
llm.system_prompt = settings.get("System Prompt")
if llm.reasoner:
llm.reasoner.system_prompt = settings.get("Reasoner System Prompt")
cl.user_session.set(
"llm", llm
)
@cl.on_chat_start
async def start_chat():
user_profile = cl.user_session.get("chat_profile")
cl.user_session.set("history", [])
llm_config = DEFAULT_LLM_CONFIG.get(user_profile)
llm = Llm.from_config(llm_config)
llm.session_id = ulid()
cl.user_session.set(
"llm", llm
)
settings = await cl.ChatSettings(
PROFILES_SETTINGS.get(user_profile)
).send()
async def run_concurrent_tasks(llm, message):
asyncio.create_task(llm.acomplete(message))
asyncio.create_task(_logger.distribute())
# Stream logger output while LLM is running
while True:
async for chunk in _logger.get_session_logs(llm.session_id):
yield chunk # Yield each chunk directly
@cl.on_message
async def main(message: cl.Message):
llm = cl.user_session.get("llm")
if not llm.config.api_key:
while True:
api_key_msg = await cl.AskUserMessage(content="Please provide a valid api_key", timeout=10).send()
if api_key_msg:
api_key = api_key_msg.get("output")
valid = check_openai_api_key(api_key)
if valid:
await cl.Message(
content=f"Config updated with key.",
).send()
llm.config.api_key = api_key
cl.user_session.set("llm", llm)
break
start = time.time()
thinking=False
history = cl.user_session.get("history")
history.append(message.content)
history = trim_messages(history, llm.tokenizer)
model_id = None
try:
if llm.reasoner is not None or llm.config.model in REASONER_PROVIDERS_MAP:
# Streaming the thinking
async with cl.Step(name=f"{llm.reasoner.config.provider} - {llm.reasoner.config.model} to think", type="llm") as thinking_step:
msg = cl.Message(content="")
async for chunk in run_concurrent_tasks(
llm,
message=history
):
if chunk == STREAM_START_TOKEN:
continue
if chunk == REASONING_START_TOKEN:
thinking = True
continue
# chunk = " - *reasoning*\n```html\n"
if chunk == REASONING_STOP_TOKEN:
thinking = False
thought_for = round(time.time() - start)
thinking_step.name = f"{llm.reasoner.config.model} to think for {thought_for}s"
await thinking_step.update()
chunk = f"```{llm.config.model}```\n"
model_id = f"```{llm.config.model}```\n"
if chunk == STREAM_END_TOKEN:
break
if thinking:
await thinking_step.stream_token(chunk)
else:
await msg.stream_token(chunk)
else:
msg = cl.Message(content="")
async for chunk in run_concurrent_tasks(
llm,
message=history
):
if chunk == STREAM_START_TOKEN:
continue
if chunk == STREAM_END_TOKEN:
break
await msg.stream_token(chunk)
hst_msg = msg.content.replace(model_id, "") if model_id else msg.content
history.append(hst_msg)
await msg.send()
except Exception as e:
await cl.ErrorMessage("Internal Server Error").send()
### TODO add future todos, include support for images and pdf upload for conversation |