File size: 5,980 Bytes
331ac77 7b9cd2c 331ac77 db1061f 331ac77 db1061f 331ac77 db1061f 331ac77 24155be 331ac77 bdfee01 24155be 331ac77 bdfee01 331ac77 7b9cd2c 9a75ed0 37ff396 331ac77 db1061f 37ff396 b62c322 9a75ed0 db1061f 9a75ed0 db1061f 9a75ed0 db1061f 331ac77 00a94ef d99c739 37ff396 db1061f 37ff396 d99c739 286c406 452f1b7 2c2b0d6 d99c739 4b04f09 d99c739 331ac77 158e3bd 00a94ef 24155be 2123ed3 bdfee01 d445c9b 00a94ef 158e3bd 99f63a1 a7c2b73 158e3bd d445c9b 158e3bd 331ac77 00a94ef 331ac77 7b9cd2c 331ac77 7b9cd2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import requests
import json
import os
API_KEY = os.getenv('API_KEY')
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/df2bee43-fb69-42b9-9ee5-f4eabbeaf3a8"
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
headers = {
"Authorization": f"Bearer {API_KEY}",
"Accept": "application/json",
"Content-Type": "application/json",
}
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning."
def clear_chat(chat_history_state, chat_message):
print("Clearing chat...")
chat_history_state = []
chat_message = ''
return chat_history_state, chat_message
def user(message, history, system_message=None):
print(f"User message: {message}")
history = history or []
if system_message: # Check if a system message is provided and should be added
history.append({"role": "system", "content": system_message})
history.append({"role": "user", "content": message})
return history
def call_nvidia_api(history, max_tokens, temperature, top_p):
payload = {
"messages": history,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"stream": False
}
print(f"Payload enviado: {payload}") # Imprime o payload enviado
session = requests.Session()
response = session.post(INVOKE_URL, headers=headers, json=payload)
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID")
fetch_url = FETCH_URL_FORMAT + request_id
response = session.get(fetch_url, headers=headers)
response.raise_for_status()
response_body = response.json()
print(f"Payload recebido: {response_body}") # Imprime o payload recebido
if response_body["choices"]:
assistant_message = response_body["choices"][0]["message"]["content"]
history.append({"role": "assistant", "content": assistant_message})
return history
def chat(history, system_message, max_tokens, temperature, top_p):
print("Starting chat...")
updated_history = call_nvidia_api(history, max_tokens, temperature, top_p)
return updated_history, ""
# Gradio interface setup
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("CodeLLAMA 34B Free Demo")
description="""
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;">
<strong>Explore the Capabilities of CodeLLAMA 34B</strong>
</div>
<p>Code Llama is an LLM capable of generating code, and natural language about code, from both code and natural language prompts.
</p>
<p> <strong>How to Use:</strong></p>
<ol>
<li>Enter your <strong>message</strong> in the textbox to start a conversation or ask a question.</li>
<li>Adjust the <strong>Temperature</strong> and <strong>Top P</strong> sliders to control the creativity and diversity of the responses.</li>
<li>Set the <strong>Max Tokens</strong> slider to determine the length of the response.</li>
<li>Use the <strong>System Message</strong> textbox if you wish to provide a specific context or instruction for the AI.</li>
<li>Click <strong>Send message</strong> to submit your query and receive a response from CodeLLAMA 34B.</li>
<li>Press <strong>New topic</strong> to clear the chat history and start a new conversation thread.</li>
</ol>
<p> <strong>Powered by NVIDIA's cutting-edge AI API, CodeLLAMA 34B offers an unparalleled opportunity to interact with an AI model of exceptional conversational ability, accessible to everyone at no cost.</strong></p>
<p> <strong>HF Created by:</strong> @artificialguybr (<a href="https://twitter.com/artificialguybr">Twitter</a>)</p>
<p> <strong>Discover more:</strong> <a href="https://artificialguy.com">artificialguy.com</a></p>
"""
gr.Markdown(description)
chatbot = gr.Chatbot()
message = gr.Textbox(label="What do you want to chat about?", placeholder="Ask me anything.", lines=3)
submit = gr.Button(value="Send message")
clear = gr.Button(value="New topic")
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5)
max_tokens = gr.Slider(20, 512, label="Max Tokens", step=20, value=500, interactive=True)
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.7, interactive=True)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95, interactive=True)
chat_history_state = gr.State([])
# Ajuste na definição da função update_chatbot para aceitar o valor atualizado do system_msg
def update_chatbot(message, chat_history, system_message, max_tokens, temperature, top_p):
print("Updating chatbot...")
if not chat_history or (chat_history and chat_history[-1]["role"] != "user"):
chat_history = user(message, chat_history, system_message if not chat_history else None)
else:
chat_history = user(message, chat_history)
chat_history, _ = chat(chat_history, system_message, max_tokens, temperature, top_p)
formatted_chat_history = []
for user_msg, assistant_msg in zip([msg["content"].strip() for msg in chat_history if msg["role"] == "user"],
[msg["content"].strip() for msg in chat_history if msg["role"] == "assistant"]):
if user_msg or assistant_msg: # Verify if either message is not empty
formatted_chat_history.append([user_msg, assistant_msg])
return formatted_chat_history, chat_history, ""
submit.click(
fn=update_chatbot,
inputs=[message, chat_history_state, system_msg, max_tokens, temperature, top_p],
outputs=[chatbot, chat_history_state, message]
)
clear.click(
fn=clear_chat,
inputs=[chat_history_state, message],
outputs=[chat_history_state, message]
)
demo.launch() |