Fabrice-TIERCELIN's picture
This PR makes each generation different
aa6965f verified
raw
history blame
4.9 kB
import random
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
print("Loading model...")
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Model loaded successfully.")
return model, model_config
# Function to set up, generate, and process the audio
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
seed = random.randint(0, 2**63 - 1)
random.seed(seed)
torch.manual_seed(seed)
print(f"Using seed: {seed}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
print("Audio normalized and converted.")
# Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
# Setting up the Gradio Interface
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="Stable Audio Generator",
description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.",
examples=[
[
"Create a serene soundscape of a quiet beach at sunset.", # Text prompt
45, # Duration in Seconds
100, # Number of Diffusion Steps
10, # CFG Scale
],
[
"Generate an energetic and bustling city street scene with distant traffic and close conversations.", # Text prompt
30, # Duration in Seconds
120, # Number of Diffusion Steps
5, # CFG Scale
],
[
"Simulate a forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt
60, # Duration in Seconds
140, # Number of Diffusion Steps
7.5, # CFG Scale
],
[
"Recreate a gentle rainfall with distant thunder.", # Text prompt
35, # Duration in Seconds
110, # Number of Diffusion Steps
8, # CFG Scale
],
[
"Imagine a jazz cafe environment with soft music and ambient chatter.", # Text prompt
25, # Duration in Seconds
90, # Number of Diffusion Steps
6, # CFG Scale
],
["Rock beat played in a treated studio, session drumming on an acoustic kit.",
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
]
])
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
interface.launch()