File size: 2,760 Bytes
be405ee 68c1454 be405ee 3e5f8f0 be405ee 3e5f8f0 be405ee 68c1454 be405ee 73af74b be405ee 3e5f8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
import requests
import os
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import time
# Definindo as informações do repositório e a trigger word
repo = "artificialguybr/StudioGhibli.Redmond-V2"
trigger_word = "Studio Ghibli, StdGBRedmAF"
# Função para enviar o prompt para a API e receber a imagem gerada
def generate_image(prompt):
api_url = f"https://api-inference.huggingface.co/models/{repo}"
#token = os.getenv("API_TOKEN") # Substitua pelo seu token da API do Hugging Face
headers = {
#"Authorization": f"Bearer {token}"
}
full_prompt = f"{prompt} {trigger_word}" # Combina o prompt do usuário com a trigger word
payload = {
"inputs": full_prompt,
"parameters": {
"negative_prompt": "bad art, ugly, watermark, deformed",
"num_inference_steps": 30,
"scheduler": "DPMSolverMultistepScheduler"
},
}
error_count = 0
pbar = tqdm(total=None, desc="Loading model")
while True:
try:
response = requests.post(api_url, headers=headers, json=payload)
if response.status_code == 200:
image_data = response.json().get("data", [])[0] # Obtém os dados da imagem
return Image.open(BytesIO(image_data))
elif response.status_code == 503:
# 503 é quando o modelo está em inicialização
time.sleep(1)
pbar.update(1)
elif response.status_code == 500 and error_count < 5:
# Erro interno do servidor, tenta novamente até 5 vezes
time.sleep(1)
error_count += 1
else:
raise Exception(f"API Error: {response.status_code}")
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
except requests.exceptions.RequestException as err:
print(f"An error occurred: {err}")
except requests.exceptions.JSONDecodeError as json_err:
print(f"JSON decode error: {json_err}")
# Se a resposta não for JSON, tenta carregar a imagem diretamente
return Image.open(BytesIO(response.content))
except Exception as e:
print(f"An unexpected error occurred: {e}")
break # Sai do loop se um erro inesperado ocorrer
# Criando a interface do Gradio
iface = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(lines=2, placeholder="Digite seu prompt aqui..."),
outputs="image",
title="Gerador de Imagens Studio Ghibli V2",
description="Insira um prompt de texto para gerar uma imagem com o estilo do Studio Ghibli."
)
# Iniciando a interface
iface.launch()
|