import gradio as gr import requests import os from PIL import Image from io import BytesIO from tqdm import tqdm import time # Definindo as informações do repositório e a trigger word repo = "artificialguybr/StudioGhibli.Redmond-V2" trigger_word = "Studio Ghibli, StdGBRedmAF" def generate_image(prompt): api_url = f"https://api-inference.huggingface.co/models/{repo}" #token = os.getenv("API_TOKEN") # Descomente e use seu token da API do Hugging Face headers = { #"Authorization": f"Bearer {token}" } full_prompt = f"{prompt} {trigger_word}" payload = { "inputs": full_prompt, "parameters": { "negative_prompt": "bad art, ugly, watermark, deformed", "num_inference_steps": 30, "scheduler": "DPMSolverMultistepScheduler" }, } error_count = 0 pbar = tqdm(total=None, desc="Loading model") while True: response = requests.post(api_url, headers=headers, json=payload) if response.status_code == 200: return Image.open(BytesIO(response.content)) # Alterado para corresponder ao primeiro código elif response.status_code == 503: time.sleep(1) pbar.update(1) elif response.status_code == 500 and error_count < 5: time.sleep(1) error_count += 1 else: raise Exception(f"API Error: {response.status_code}") iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(lines=2, placeholder="Digite seu prompt aqui..."), outputs="image", title="Gerador de Imagens Studio Ghibli V2", description="Insira um prompt de texto para gerar uma imagem com o estilo do Studio Ghibli." ) iface.launch()