Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import logging | |
import os | |
import json | |
from PIL import Image | |
import torch | |
from surya.ocr import run_ocr | |
from surya.detection import batch_text_detection | |
from surya.layout import batch_layout_detection | |
from surya.ordering import batch_ordering | |
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor | |
from surya.model.recognition.model import load_model as load_rec_model | |
from surya.model.recognition.processor import load_processor as load_rec_processor | |
from surya.settings import settings | |
from surya.model.ordering.processor import load_processor as load_order_processor | |
from surya.model.ordering.model import load_model as load_order_model | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Set environment variables for performance | |
os.environ["RECOGNITION_BATCH_SIZE"] = "512" | |
os.environ["DETECTOR_BATCH_SIZE"] = "36" | |
os.environ["ORDER_BATCH_SIZE"] = "32" | |
os.environ["RECOGNITION_STATIC_CACHE"] = "true" | |
# Load models | |
logger.info("Loading models...") | |
det_processor, det_model = load_det_processor(), load_det_model() | |
rec_model, rec_processor = load_rec_model(), load_rec_processor() | |
layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
order_model = load_order_model() | |
order_processor = load_order_processor() | |
# Compile recognition model | |
logger.info("Compiling recognition model...") | |
rec_model.decoder.model = torch.compile(rec_model.decoder.model) | |
def ocr_workflow(image, langs): | |
logger.info(f"Starting OCR workflow with languages: {langs}") | |
image = Image.open(image.name) | |
predictions = run_ocr([image], [langs.split(',')], det_model, det_processor, rec_model, rec_processor) | |
logger.info("OCR workflow completed") | |
return json.dumps(predictions, indent=2) | |
def text_detection_workflow(image): | |
logger.info("Starting text detection workflow") | |
image = Image.open(image.name) | |
predictions = batch_text_detection([image], det_model, det_processor) | |
logger.info("Text detection workflow completed") | |
return json.dumps(predictions, indent=2) | |
def layout_analysis_workflow(image): | |
logger.info("Starting layout analysis workflow") | |
image = Image.open(image.name) | |
line_predictions = batch_text_detection([image], det_model, det_processor) | |
layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions) | |
logger.info("Layout analysis workflow completed") | |
return json.dumps(layout_predictions, indent=2) | |
def reading_order_workflow(image): | |
logger.info("Starting reading order workflow") | |
image = Image.open(image.name) | |
line_predictions = batch_text_detection([image], det_model, det_processor) | |
layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions) | |
bboxes = [pred['bbox'] for pred in layout_predictions[0]['bboxes']] | |
order_predictions = batch_ordering([image], [bboxes], order_model, order_processor) | |
logger.info("Reading order workflow completed") | |
return json.dumps(order_predictions, indent=2) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Surya Document Analysis") | |
with gr.Tab("OCR"): | |
gr.Markdown("## Optical Character Recognition") | |
with gr.Row(): | |
ocr_input = gr.File(label="Upload Image or PDF") | |
ocr_langs = gr.Textbox(label="Languages (comma-separated)", value="en") | |
ocr_button = gr.Button("Run OCR") | |
ocr_output = gr.JSON(label="OCR Results") | |
ocr_button.click(ocr_workflow, inputs=[ocr_input, ocr_langs], outputs=ocr_output) | |
with gr.Tab("Text Detection"): | |
gr.Markdown("## Text Line Detection") | |
det_input = gr.File(label="Upload Image or PDF") | |
det_button = gr.Button("Run Text Detection") | |
det_output = gr.JSON(label="Text Detection Results") | |
det_button.click(text_detection_workflow, inputs=det_input, outputs=det_output) | |
with gr.Tab("Layout Analysis"): | |
gr.Markdown("## Layout Analysis and Reading Order") | |
layout_input = gr.File(label="Upload Image or PDF") | |
layout_button = gr.Button("Run Layout Analysis") | |
order_button = gr.Button("Determine Reading Order") | |
layout_output = gr.JSON(label="Layout Analysis Results") | |
order_output = gr.JSON(label="Reading Order Results") | |
layout_button.click(layout_analysis_workflow, inputs=layout_input, outputs=layout_output) | |
order_button.click(reading_order_workflow, inputs=layout_input, outputs=order_output) | |
if __name__ == "__main__": | |
logger.info("Starting Gradio app...") | |
demo.launch() | |