Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,113 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
-
import io
|
4 |
from surya.ocr import run_ocr
|
|
|
|
|
|
|
5 |
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
|
6 |
from surya.model.recognition.model import load_model as load_rec_model
|
7 |
from surya.model.recognition.processor import load_processor as load_rec_processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Load models and processors
|
|
|
10 |
det_processor, det_model = load_det_processor(), load_det_model()
|
11 |
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
else:
|
18 |
-
return "No image uploaded"
|
19 |
-
|
20 |
-
# Perform OCR
|
21 |
-
langs = [language] # You can expand this to support multiple languages
|
22 |
-
predictions = run_ocr([image], [langs], det_model, det_processor, rec_model, rec_processor)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
#
|
33 |
iface = gr.Interface(
|
34 |
-
fn=
|
35 |
inputs=[
|
36 |
-
gr.Image(type="
|
37 |
-
gr.
|
38 |
],
|
39 |
-
outputs=gr.Textbox(label="
|
40 |
-
title="
|
41 |
-
description="Upload an image to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
-
# Launch the
|
45 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import json
|
6 |
from PIL import Image
|
|
|
7 |
from surya.ocr import run_ocr
|
8 |
+
from surya.detection import batch_text_detection
|
9 |
+
from surya.layout import batch_layout_detection
|
10 |
+
from surya.ordering import batch_ordering
|
11 |
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
|
12 |
from surya.model.recognition.model import load_model as load_rec_model
|
13 |
from surya.model.recognition.processor import load_processor as load_rec_processor
|
14 |
+
from surya.model.ordering.model import load_model as load_order_model
|
15 |
+
from surya.model.ordering.processor import load_processor as load_order_processor
|
16 |
+
from surya.settings import settings
|
17 |
+
|
18 |
+
# Set up logging
|
19 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
|
22 |
# Load models and processors
|
23 |
+
logger.info("Loading models and processors...")
|
24 |
det_processor, det_model = load_det_processor(), load_det_model()
|
25 |
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
26 |
+
layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT)
|
27 |
+
layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT)
|
28 |
+
order_model = load_order_model()
|
29 |
+
order_processor = load_order_processor()
|
30 |
|
31 |
+
# Compile the OCR model for better performance
|
32 |
+
logger.info("Compiling OCR model...")
|
33 |
+
os.environ['RECOGNITION_STATIC_CACHE'] = 'true'
|
34 |
+
rec_model.decoder.model = torch.compile(rec_model.decoder.model)
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
def process_image(image_path, langs):
|
37 |
+
logger.info(f"Processing image: {image_path}")
|
38 |
+
image = Image.open(image_path)
|
39 |
+
|
40 |
+
# OCR
|
41 |
+
logger.info("Performing OCR...")
|
42 |
+
ocr_predictions = run_ocr([image], [langs.split(',')], det_model, det_processor, rec_model, rec_processor)
|
43 |
+
|
44 |
+
# Text line detection
|
45 |
+
logger.info("Detecting text lines...")
|
46 |
+
line_predictions = batch_text_detection([image], det_model, det_processor)
|
47 |
+
|
48 |
+
# Layout analysis
|
49 |
+
logger.info("Analyzing layout...")
|
50 |
+
layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions)
|
51 |
+
|
52 |
+
# Reading order
|
53 |
+
logger.info("Determining reading order...")
|
54 |
+
bboxes = [bbox['bbox'] for bbox in layout_predictions[0]['bboxes']]
|
55 |
+
order_predictions = batch_ordering([image], [bboxes], order_model, order_processor)
|
56 |
+
|
57 |
+
# Combine results
|
58 |
+
results = {
|
59 |
+
"ocr": ocr_predictions[0],
|
60 |
+
"text_lines": line_predictions[0],
|
61 |
+
"layout": layout_predictions[0],
|
62 |
+
"reading_order": order_predictions[0]
|
63 |
+
}
|
64 |
+
|
65 |
+
logger.info("Processing complete.")
|
66 |
+
return json.dumps(results, indent=2)
|
67 |
|
68 |
+
def surya_ui(image, langs):
|
69 |
+
if image is None:
|
70 |
+
return "Please upload an image."
|
71 |
+
|
72 |
+
try:
|
73 |
+
result = process_image(image, langs)
|
74 |
+
return result
|
75 |
+
except Exception as e:
|
76 |
+
logger.error(f"Error processing image: {str(e)}")
|
77 |
+
return f"An error occurred: {str(e)}"
|
78 |
|
79 |
+
# Create Gradio interface
|
80 |
iface = gr.Interface(
|
81 |
+
fn=surya_ui,
|
82 |
inputs=[
|
83 |
+
gr.Image(type="filepath", label="Upload Image"),
|
84 |
+
gr.Textbox(label="Languages (comma-separated, e.g., 'en,fr')", value="en")
|
85 |
],
|
86 |
+
outputs=gr.Textbox(label="Results"),
|
87 |
+
title="Surya Document Analysis",
|
88 |
+
description="Upload an image to perform OCR, text line detection, layout analysis, and reading order detection.",
|
89 |
+
theme="huggingface",
|
90 |
+
css="""
|
91 |
+
.gradio-container {
|
92 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
93 |
+
}
|
94 |
+
.gr-button {
|
95 |
+
color: white;
|
96 |
+
border-radius: 8px;
|
97 |
+
background: linear-gradient(45deg, #ff9a9e 0%, #fad0c4 99%, #fad0c4 100%);
|
98 |
+
}
|
99 |
+
.gr-button:hover {
|
100 |
+
background: linear-gradient(45deg, #fad0c4 0%, #ff9a9e 99%, #ff9a9e 100%);
|
101 |
+
}
|
102 |
+
.gr-form {
|
103 |
+
border-radius: 12px;
|
104 |
+
background-color: #ffffff;
|
105 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
106 |
+
}
|
107 |
+
"""
|
108 |
)
|
109 |
|
110 |
+
# Launch the interface
|
111 |
+
if __name__ == "__main__":
|
112 |
+
logger.info("Starting Gradio interface...")
|
113 |
+
iface.launch()
|