import gradio as gr import json from PIL import Image # Assuming these imports work as expected, but you might need to adjust based on your actual package structure from surya.ocr import run_ocr from surya.detection import batch_detection from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from surya.postprocessing.heatmap import draw_polys_on_image # Load models and processors with print statements to confirm loading print("Loading models and processors...") det_model, det_processor = load_det_model(), load_det_processor() rec_model, rec_processor = load_rec_model(), load_rec_processor() print("Models and processors loaded successfully.") # Load language codes print("Loading language codes...") with open("languages.json", "r") as file: languages = json.load(file) language_dict = {name: code for name, code in languages.items()} print(f"Loaded languages: {list(language_dict.keys())}") def ocr_function(img, lang_name): print(f"OCR Function Called with lang_name: {lang_name}") lang_code = language_dict[lang_name] print(f"Language Code: {lang_code}") # Ensure langs is a list of language codes, not a list of lists predictions = run_ocr([img], [lang_code], det_model, det_processor, rec_model, rec_processor) # Corrected print(f"Predictions: {predictions}") if predictions: img_with_text = draw_polys_on_image(predictions[0]["polys"], img) return img_with_text, predictions[0]["text"] else: return img, "No text detected" def text_line_detection_function(img): print("Text Line Detection Function Called") preds = batch_detection([img], det_model, det_processor)[0] # Assuming this returns a DetectionResult object print(f"Detection Predictions: {preds}") # Check if preds has an attribute 'bboxes' and use it if hasattr(preds, 'bboxes'): # Assuming draw_polys_on_image can work with the format of bboxes directly or you adapt it accordingly img_with_lines = draw_polys_on_image([bbox.polygon for bbox in preds.bboxes], img) return img_with_lines, preds else: raise AttributeError("DetectionResult object does not have 'bboxes' attribute") with gr.Blocks() as app: gr.Markdown("# Surya OCR and Text Line Detection") with gr.Tab("OCR"): with gr.Column(): ocr_input_image = gr.Image(label="Input Image for OCR", type="pil") ocr_language_selector = gr.Dropdown(label="Select Language for OCR", choices=list(language_dict.keys()), value="English") ocr_run_button = gr.Button("Run OCR") with gr.Column(): ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False) ocr_text_output = gr.TextArea(label="Recognized Text") ocr_run_button.click(fn=ocr_function, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output]) with gr.Tab("Text Line Detection"): with gr.Column(): detection_input_image = gr.Image(label="Input Image for Detection", type="pil") detection_run_button = gr.Button("Run Text Line Detection") with gr.Column(): detection_output_image = gr.Image(label="Detection Output Image", type="pil", interactive=False) detection_json_output = gr.JSON(label="Detection JSON Output") detection_run_button.click(fn=text_line_detection_function, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output]) if __name__ == "__main__": app.launch()