import gradio as gr import logging import os import json from PIL import Image import torch from surya.ocr import run_ocr from surya.detection import batch_text_detection from surya.layout import batch_layout_detection from surya.ordering import batch_ordering from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from surya.settings import settings from surya.model.ordering.processor import load_processor as load_order_processor from surya.model.ordering.model import load_model as load_order_model # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Set environment variables for performance os.environ["RECOGNITION_BATCH_SIZE"] = "512" os.environ["DETECTOR_BATCH_SIZE"] = "36" os.environ["ORDER_BATCH_SIZE"] = "32" os.environ["RECOGNITION_STATIC_CACHE"] = "true" # Load models logger.info("Loading models...") det_processor, det_model = load_det_processor(), load_det_model() rec_model, rec_processor = load_rec_model(), load_rec_processor() layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) order_model = load_order_model() order_processor = load_order_processor() # Compile recognition model logger.info("Compiling recognition model...") rec_model.decoder.model = torch.compile(rec_model.decoder.model) def ocr_workflow(image, langs): logger.info(f"Starting OCR workflow with languages: {langs}") image = Image.open(image.name) predictions = run_ocr([image], [langs.split(',')], det_model, det_processor, rec_model, rec_processor) logger.info("OCR workflow completed") return json.dumps(predictions, indent=2) def text_detection_workflow(image): logger.info("Starting text detection workflow") image = Image.open(image.name) predictions = batch_text_detection([image], det_model, det_processor) logger.info("Text detection workflow completed") return json.dumps(predictions, indent=2) def layout_analysis_workflow(image): logger.info("Starting layout analysis workflow") image = Image.open(image.name) line_predictions = batch_text_detection([image], det_model, det_processor) layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions) logger.info("Layout analysis workflow completed") return json.dumps(layout_predictions, indent=2) def reading_order_workflow(image): logger.info("Starting reading order workflow") image = Image.open(image.name) line_predictions = batch_text_detection([image], det_model, det_processor) layout_predictions = batch_layout_detection([image], layout_model, layout_processor, line_predictions) bboxes = [pred['bbox'] for pred in layout_predictions[0]['bboxes']] order_predictions = batch_ordering([image], [bboxes], order_model, order_processor) logger.info("Reading order workflow completed") return json.dumps(order_predictions, indent=2) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Surya Document Analysis") with gr.Tab("OCR"): gr.Markdown("## Optical Character Recognition") with gr.Row(): ocr_input = gr.File(label="Upload Image or PDF") ocr_langs = gr.Textbox(label="Languages (comma-separated)", value="en") ocr_button = gr.Button("Run OCR") ocr_output = gr.JSON(label="OCR Results") ocr_button.click(ocr_workflow, inputs=[ocr_input, ocr_langs], outputs=ocr_output) with gr.Tab("Text Detection"): gr.Markdown("## Text Line Detection") det_input = gr.File(label="Upload Image or PDF") det_button = gr.Button("Run Text Detection") det_output = gr.JSON(label="Text Detection Results") det_button.click(text_detection_workflow, inputs=det_input, outputs=det_output) with gr.Tab("Layout Analysis"): gr.Markdown("## Layout Analysis and Reading Order") layout_input = gr.File(label="Upload Image or PDF") layout_button = gr.Button("Run Layout Analysis") order_button = gr.Button("Determine Reading Order") layout_output = gr.JSON(label="Layout Analysis Results") order_output = gr.JSON(label="Reading Order Results") layout_button.click(layout_analysis_workflow, inputs=layout_input, outputs=layout_output) order_button.click(reading_order_workflow, inputs=layout_input, outputs=order_output) if __name__ == "__main__": logger.info("Starting Gradio app...") demo.launch()