Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,616 Bytes
240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 bdd072a 240de18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
import torch
import yt_dlp
import os
import subprocess
import json
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
import moviepy.editor as mp
import time
import langdetect
import uuid
HF_TOKEN = os.environ.get("HF_TOKEN")
print("Starting the program...")
model_path = "internlm/internlm2_5-7b-chat"
print(f"Loading model {model_path}...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
print("Model successfully loaded.")
def generate_unique_filename(extension):
return f"{uuid.uuid4()}{extension}"
def cleanup_file(file_path):
if os.path.exists(file_path):
os.remove(file_path)
print(f"Cleaned up file: {file_path}")
def download_youtube_audio(url):
print(f"Downloading audio from YouTube: {url}")
output_path = generate_unique_filename('.wav')
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
}],
'outtmpl': output_path
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
if os.path.exists(output_path):
print(f"Audio download completed. File saved at: {output_path}")
print(f"File size: {os.path.getsize(output_path)} bytes")
else:
print(f"Error: File {output_path} not found after download.")
return output_path
@spaces.GPU(duration=60)
def transcribe_audio(file_path):
print(f"Starting transcription of file: {file_path}")
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
print("Video file detected. Extracting audio...")
try:
video = mp.VideoFileClip(file_path)
audio_path = generate_unique_filename('.wav')
video.audio.write_audiofile(audio_path)
cleanup_file(file_path)
file_path = audio_path
except Exception as e:
print(f"Error extracting audio from video: {e}")
raise
output_file = generate_unique_filename('.json')
command = [
"insanely-fast-whisper",
"--file-name", file_path,
"--device-id", "0",
"--model-name", "openai/whisper-large-v3",
"--task", "transcribe",
"--timestamp", "chunk",
"--transcript-path", output_file
]
print(f"Executing command: {' '.join(command)}")
try:
result = subprocess.run(command, check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
print(f"Error running insanely-fast-whisper: {e}")
raise
try:
with open(output_file, "r") as f:
transcription = json.load(f)
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
raise
if "text" in transcription:
result = transcription["text"]
else:
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
cleanup_file(file_path)
cleanup_file(output_file)
return result
@spaces.GPU(duration=60)
def generate_summary_stream(transcription):
print("Starting summary generation...")
detected_language = langdetect.detect(transcription)
prompt = f"""Summarize the following video transcription in 150-300 words.
The summary should be in the same language as the transcription, which is detected as {detected_language}.
Please ensure that the summary captures the main points and key ideas of the transcription:
{transcription[:300000]}..."""
response, history = model.chat(tokenizer, prompt, history=[])
print(f"Final summary generated: {response[:100]}...")
return response
def process_youtube(url):
if not url:
return "Please enter a YouTube URL.", None
try:
audio_file = download_youtube_audio(url)
transcription = transcribe_audio(audio_file)
return transcription, None
except Exception as e:
return f"Processing error: {str(e)}", None
finally:
cleanup_file(audio_file)
def process_uploaded_video(video_path):
try:
transcription = transcribe_audio(video_path)
return transcription, None
except Exception as e:
return f"Processing error: {str(e)}", None
finally:
cleanup_file(video_path)
print("Setting up Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# 🎥 Video Transcription and Smart Summary
Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
"""
)
with gr.Tabs():
with gr.TabItem("📤 Video Upload"):
video_input = gr.Video(label="Drag and drop or click to upload")
video_button = gr.Button("🚀 Process Video", variant="primary")
with gr.TabItem("🔗 YouTube Link"):
url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...")
url_button = gr.Button("🚀 Process URL", variant="primary")
with gr.Row():
with gr.Column():
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
with gr.Column():
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
summary_button = gr.Button("📝 Generate Summary", variant="secondary")
gr.Markdown(
"""
### How to use:
1. Upload a video or paste a YouTube link.
2. Click 'Process' to get the transcription.
3. Click 'Generate Summary' to get a summary of the content.
*Note: Processing may take a few minutes depending on the video length.*
"""
)
def process_video_and_update(video):
if video is None:
return "No video uploaded.", "Please upload a video."
transcription, _ = process_uploaded_video(video)
return transcription or "Transcription error", ""
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
print("Launching Gradio interface...")
demo.launch()
|