File size: 6,616 Bytes
240de18
 
 
 
 
 
 
 
 
 
 
 
bdd072a
240de18
 
 
 
 
 
 
 
 
 
 
bdd072a
 
 
 
 
 
 
 
 
240de18
bdd072a
240de18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdd072a
 
240de18
 
 
 
 
 
 
 
bdd072a
240de18
bdd072a
240de18
 
 
 
bdd072a
 
240de18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdd072a
240de18
 
 
 
 
 
bdd072a
240de18
 
 
 
bdd072a
 
 
 
240de18
 
 
 
 
 
 
 
 
 
 
bdd072a
240de18
 
 
 
 
 
 
 
 
bdd072a
240de18
 
 
 
 
bdd072a
240de18
 
 
 
 
 
 
bdd072a
 
240de18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
import torch
import yt_dlp
import os
import subprocess
import json
from threading import Thread
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
import moviepy.editor as mp
import time
import langdetect
import uuid

HF_TOKEN = os.environ.get("HF_TOKEN")
print("Starting the program...")

model_path = "internlm/internlm2_5-7b-chat"
print(f"Loading model {model_path}...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
print("Model successfully loaded.")

def generate_unique_filename(extension):
    return f"{uuid.uuid4()}{extension}"

def cleanup_file(file_path):
    if os.path.exists(file_path):
        os.remove(file_path)
        print(f"Cleaned up file: {file_path}")

def download_youtube_audio(url):
    print(f"Downloading audio from YouTube: {url}")
    output_path = generate_unique_filename('.wav')
    ydl_opts = {
        'format': 'bestaudio/best',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
        }],
        'outtmpl': output_path
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        ydl.download([url])
    
    if os.path.exists(output_path):
        print(f"Audio download completed. File saved at: {output_path}")
        print(f"File size: {os.path.getsize(output_path)} bytes")
    else:
        print(f"Error: File {output_path} not found after download.")
    
    return output_path

@spaces.GPU(duration=60)
def transcribe_audio(file_path):
    print(f"Starting transcription of file: {file_path}")
    if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
        print("Video file detected. Extracting audio...")
        try:
            video = mp.VideoFileClip(file_path)
            audio_path = generate_unique_filename('.wav')
            video.audio.write_audiofile(audio_path)
            cleanup_file(file_path)
            file_path = audio_path
        except Exception as e:
            print(f"Error extracting audio from video: {e}")
            raise
    
    output_file = generate_unique_filename('.json')
    command = [
        "insanely-fast-whisper",
        "--file-name", file_path,
        "--device-id", "0",
        "--model-name", "openai/whisper-large-v3",
        "--task", "transcribe",
        "--timestamp", "chunk",
        "--transcript-path", output_file
    ]
    print(f"Executing command: {' '.join(command)}")
    try:
        result = subprocess.run(command, check=True, capture_output=True, text=True)
    except subprocess.CalledProcessError as e:
        print(f"Error running insanely-fast-whisper: {e}")
        raise
    
    try:
        with open(output_file, "r") as f:
            transcription = json.load(f)
    except json.JSONDecodeError as e:
        print(f"Error decoding JSON: {e}")
        raise
    
    if "text" in transcription:
        result = transcription["text"]
    else:
        result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
    
    cleanup_file(file_path)
    cleanup_file(output_file)
    
    return result

@spaces.GPU(duration=60)
def generate_summary_stream(transcription):
    print("Starting summary generation...")
    detected_language = langdetect.detect(transcription)
    
    prompt = f"""Summarize the following video transcription in 150-300 words. 
    The summary should be in the same language as the transcription, which is detected as {detected_language}.
    Please ensure that the summary captures the main points and key ideas of the transcription:

    {transcription[:300000]}..."""
    
    response, history = model.chat(tokenizer, prompt, history=[])
    print(f"Final summary generated: {response[:100]}...")
    return response

def process_youtube(url):
    if not url:
        return "Please enter a YouTube URL.", None
    try:
        audio_file = download_youtube_audio(url)
        transcription = transcribe_audio(audio_file)
        return transcription, None
    except Exception as e:
        return f"Processing error: {str(e)}", None
    finally:
        cleanup_file(audio_file)

def process_uploaded_video(video_path):
    try:
        transcription = transcribe_audio(video_path)
        return transcription, None
    except Exception as e:
        return f"Processing error: {str(e)}", None
    finally:
        cleanup_file(video_path)

print("Setting up Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🎥 Video Transcription and Smart Summary
        
        Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
        """
    )
    
    with gr.Tabs():
        with gr.TabItem("📤 Video Upload"):
            video_input = gr.Video(label="Drag and drop or click to upload")
            video_button = gr.Button("🚀 Process Video", variant="primary")
        
        with gr.TabItem("🔗 YouTube Link"):
            url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...")
            url_button = gr.Button("🚀 Process URL", variant="primary")
    
    with gr.Row():
        with gr.Column():
            transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
        with gr.Column():
            summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
    
    summary_button = gr.Button("📝 Generate Summary", variant="secondary")
    
    gr.Markdown(
        """
        ### How to use:
        1. Upload a video or paste a YouTube link.
        2. Click 'Process' to get the transcription.
        3. Click 'Generate Summary' to get a summary of the content.
        
        *Note: Processing may take a few minutes depending on the video length.*
        """
    )
    
    def process_video_and_update(video):
        if video is None:
            return "No video uploaded.", "Please upload a video."
        transcription, _ = process_uploaded_video(video)
        return transcription or "Transcription error", ""

    video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
    url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
    summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])

print("Launching Gradio interface...")
demo.launch()