import gradio as gr import torch import yt_dlp import os import subprocess import json from threading import Thread from transformers import AutoTokenizer, AutoModelForCausalLM import spaces import moviepy.editor as mp import time import langdetect import uuid HF_TOKEN = os.environ.get("HF_TOKEN") print("Starting the program...") model_path = "internlm/internlm2_5-7b-chat" print(f"Loading model {model_path}...") tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda() model = model.eval() print("Model successfully loaded.") def generate_unique_filename(extension): return f"{uuid.uuid4()}{extension}" def cleanup_file(file_path): if os.path.exists(file_path): os.remove(file_path) print(f"Cleaned up file: {file_path}") def download_youtube_audio(url): print(f"Downloading audio from YouTube: {url}") output_path = generate_unique_filename('.wav') ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], 'outtmpl': output_path } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) if os.path.exists(output_path): print(f"Audio download completed. File saved at: {output_path}") print(f"File size: {os.path.getsize(output_path)} bytes") else: print(f"Error: File {output_path} not found after download.") return output_path @spaces.GPU(duration=60) def transcribe_audio(file_path): print(f"Starting transcription of file: {file_path}") if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')): print("Video file detected. Extracting audio...") try: video = mp.VideoFileClip(file_path) audio_path = generate_unique_filename('.wav') video.audio.write_audiofile(audio_path) cleanup_file(file_path) file_path = audio_path except Exception as e: print(f"Error extracting audio from video: {e}") raise output_file = generate_unique_filename('.json') command = [ "insanely-fast-whisper", "--file-name", file_path, "--device-id", "0", "--model-name", "openai/whisper-large-v3", "--task", "transcribe", "--timestamp", "chunk", "--transcript-path", output_file ] print(f"Executing command: {' '.join(command)}") try: result = subprocess.run(command, check=True, capture_output=True, text=True) except subprocess.CalledProcessError as e: print(f"Error running insanely-fast-whisper: {e}") raise try: with open(output_file, "r") as f: transcription = json.load(f) except json.JSONDecodeError as e: print(f"Error decoding JSON: {e}") raise if "text" in transcription: result = transcription["text"] else: result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])]) cleanup_file(file_path) cleanup_file(output_file) return result @spaces.GPU(duration=60) def generate_summary_stream(transcription): print("Starting summary generation...") detected_language = langdetect.detect(transcription) prompt = f"""Summarize the following video transcription in 150-300 words. The summary should be in the same language as the transcription, which is detected as {detected_language}. Please ensure that the summary captures the main points and key ideas of the transcription: {transcription[:300000]}...""" response, history = model.chat(tokenizer, prompt, history=[]) print(f"Final summary generated: {response[:100]}...") return response def process_youtube(url): if not url: return "Please enter a YouTube URL.", None try: audio_file = download_youtube_audio(url) transcription = transcribe_audio(audio_file) return transcription, None except Exception as e: return f"Processing error: {str(e)}", None finally: cleanup_file(audio_file) def process_uploaded_video(video_path): try: transcription = transcribe_audio(video_path) return transcription, None except Exception as e: return f"Processing error: {str(e)}", None finally: cleanup_file(video_path) print("Setting up Gradio interface...") with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🎥 Video Transcription and Smart Summary Upload a video or provide a YouTube link to get a transcription and AI-generated summary. """ ) with gr.Tabs(): with gr.TabItem("📤 Video Upload"): video_input = gr.Video(label="Drag and drop or click to upload") video_button = gr.Button("🚀 Process Video", variant="primary") with gr.TabItem("🔗 YouTube Link"): url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...") url_button = gr.Button("🚀 Process URL", variant="primary") with gr.Row(): with gr.Column(): transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True) with gr.Column(): summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True) summary_button = gr.Button("📝 Generate Summary", variant="secondary") gr.Markdown( """ ### How to use: 1. Upload a video or paste a YouTube link. 2. Click 'Process' to get the transcription. 3. Click 'Generate Summary' to get a summary of the content. *Note: Processing may take a few minutes depending on the video length.* """ ) def process_video_and_update(video): if video is None: return "No video uploaded.", "Please upload a video." transcription, _ = process_uploaded_video(video) return transcription or "Transcription error", "" video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output]) url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output]) summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output]) print("Launching Gradio interface...") demo.launch()