File size: 3,482 Bytes
dddb041
 
 
 
 
 
b8a701a
4ef6d61
 
 
b8a701a
 
dddb041
 
 
 
223f8b4
 
49f145b
a146eda
 
ccde57b
 
a146eda
ccde57b
b8a701a
 
 
0347515
b8a701a
0347515
a146eda
49f145b
0347515
 
 
4ef6d61
0347515
c49f67b
4ef6d61
322db57
 
 
4ef6d61
322db57
4ef6d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db08793
a146eda
322db57
bf71179
4ef6d61
a146eda
538d554
057bc07
 
 
 
 
 
 
 
a200bb2
 
1b088a5
057bc07
c133494
057bc07
c49f67b
a146eda
057bc07
4ef6d61
 
 
 
 
a200bb2
057bc07
c49f67b
057bc07
 
c03b3ba
4ef6d61
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
import requests
import io
from PIL import Image
import json
import os
import logging
import math 
from tqdm import tqdm
import time

logging.basicConfig(level=logging.DEBUG)

with open('loras.json', 'r') as f:
    loras = json.load(f)

def update_selection(selected_state: gr.SelectData):
    logging.debug(f"Inside update_selection, selected_state: {selected_state}")
    selected_lora_index = selected_state.index  # Changed this line
    selected_lora = loras[selected_lora_index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    return (
        gr.update(placeholder=new_placeholder),
        selected_state
    )

def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)):
    logging.debug(f"Inside run_lora, selected_state: {selected_state}")
    if not selected_state:
        logging.error("selected_state is None or empty.")
        raise gr.Error("You must select a LoRA")

    selected_lora_index = selected_state.index  # Changed this line
    selected_lora = loras[selected_lora_index]
    api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
    trigger_word = selected_lora["trigger_word"]
    #token = os.getenv("API_TOKEN")
    payload = {"inputs": f"{prompt} {trigger_word}"}

    #headers = {"Authorization": f"Bearer {token}"}
    
    # Add a print statement to display the API request
    print(f"API Request: {api_url}")
    #print(f"API Headers: {headers}")
    print(f"API Payload: {payload}")

    error_count = 0
    pbar = tqdm(total=None, desc="Loading model")
    while(True):
        response = requests.post(api_url, json=payload)
        if response.status_code == 200:
            return Image.open(io.BytesIO(response.content))
        elif response.status_code == 503:
            #503 is triggered when the model is doing cold boot. It also gives you a time estimate from when the model is loaded but it is not super precise
            time.sleep(1)
            pbar.update(1)
        elif response.status_code == 500 and error_count < 5:
            print(response.content)
            time.sleep(1)
            error_count += 1
            continue
        else:
            logging.error(f"API Error: {response.status_code}")
            raise gr.Error("API Error: Unable to fetch the image.")  # Raise a Gradio error here



with gr.Blocks(css="custom.css") as app:
    title = gr.Markdown("# artificialguybr LoRA portfolio")
    selected_state = gr.State()  
    with gr.Row():
        gallery = gr.Gallery(
            [(item["image"], item["title"]) for item in loras],
            label="LoRA Gallery",
            allow_preview=False,
            columns=3
        )
        with gr.Column():
            prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA")
                button = gr.Button("Run")
            result = gr.Image(interactive=False, label="Generated Image")

    gallery.select(
        update_selection,
        outputs=[prompt, selected_state]
    )
    prompt.submit(
        fn=run_lora,
        inputs=[prompt, selected_state],
        outputs=[result]
    )
    button.click(
        fn=run_lora,
        inputs=[prompt, selected_state],
        outputs=[result]
    )

app.queue(max_size=20, concurrency_count=5)
app.launch()