Spaces:
Running
on
Zero
Running
on
Zero
artificialguybr
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
import requests
|
3 |
-
import io
|
4 |
-
from PIL import Image
|
5 |
import json
|
6 |
-
import os
|
7 |
import logging
|
8 |
-
import
|
9 |
-
from
|
10 |
-
import
|
11 |
-
|
12 |
-
#logging.basicConfig(level=logging.DEBUG)
|
13 |
|
|
|
14 |
with open('loras.json', 'r') as f:
|
15 |
loras = json.load(f)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
def update_selection(selected_state: gr.SelectData):
|
18 |
-
logging.debug(f"Inside update_selection, selected_state: {selected_state}")
|
19 |
selected_lora_index = selected_state.index
|
20 |
selected_lora = loras[selected_lora_index]
|
21 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
@@ -23,64 +23,52 @@ def update_selection(selected_state: gr.SelectData):
|
|
23 |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
24 |
return (
|
25 |
gr.update(placeholder=new_placeholder),
|
26 |
-
updated_text,
|
27 |
selected_state
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
def run_lora(prompt, selected_state,
|
32 |
-
logging.debug(f"Inside run_lora, selected_state: {selected_state}")
|
33 |
if not selected_state:
|
34 |
-
|
35 |
-
raise gr.Error("You must select a LoRA before proceeding.") # Popup error when no LoRA is selected
|
36 |
|
37 |
-
selected_lora_index = selected_state.index
|
38 |
selected_lora = loras[selected_lora_index]
|
39 |
-
|
40 |
trigger_word = selected_lora["trigger_word"]
|
41 |
-
#token = os.getenv("API_TOKEN")
|
42 |
-
payload = {
|
43 |
-
"inputs": f"{prompt} {trigger_word}",
|
44 |
-
"parameters":{"negative_prompt": "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)", "num_inference_steps": 30, "scheduler":"DPMSolverMultistepScheduler"},
|
45 |
-
}
|
46 |
-
#headers = {"Authorization": f"Bearer {token}"}
|
47 |
-
|
48 |
-
# Add a print statement to display the API request
|
49 |
-
print(f"API Request: {api_url}")
|
50 |
-
#print(f"API Headers: {headers}")
|
51 |
-
print(f"API Payload: {payload}")
|
52 |
-
|
53 |
-
error_count = 0
|
54 |
-
pbar = tqdm(total=None, desc="Loading model")
|
55 |
-
while(True):
|
56 |
-
response = requests.post(api_url, json=payload)
|
57 |
-
if response.status_code == 200:
|
58 |
-
return Image.open(io.BytesIO(response.content))
|
59 |
-
elif response.status_code == 503:
|
60 |
-
#503 is triggered when the model is doing cold boot. It also gives you a time estimate from when the model is loaded but it is not super precise
|
61 |
-
time.sleep(1)
|
62 |
-
pbar.update(1)
|
63 |
-
elif response.status_code == 500 and error_count < 5:
|
64 |
-
print(response.content)
|
65 |
-
time.sleep(1)
|
66 |
-
error_count += 1
|
67 |
-
continue
|
68 |
-
else:
|
69 |
-
logging.error(f"API Error: {response.status_code}")
|
70 |
-
raise gr.Error("API Error: Unable to fetch the image.") # Raise a Gradio error here
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
73 |
|
74 |
with gr.Blocks(css="custom.css") as app:
|
75 |
-
|
76 |
-
|
77 |
-
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr)
|
78 |
-
"**Note**:
|
79 |
-
"
|
80 |
-
"**Warning**: The API might take some time to deliver the image. \n"
|
81 |
-
"Special thanks to Hugging Face for their free inference API."
|
82 |
)
|
|
|
83 |
selected_state = gr.State()
|
|
|
84 |
with gr.Row():
|
85 |
gallery = gr.Gallery(
|
86 |
[(item["image"], item["title"]) for item in loras],
|
@@ -88,28 +76,29 @@ with gr.Blocks(css="custom.css") as app:
|
|
88 |
allow_preview=False,
|
89 |
columns=3
|
90 |
)
|
|
|
91 |
with gr.Column():
|
92 |
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
|
93 |
-
selected_info = gr.Markdown("")
|
|
|
|
|
|
|
94 |
with gr.Row():
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
gallery.select(
|
100 |
-
|
101 |
-
|
102 |
-
)
|
103 |
-
prompt.submit(
|
104 |
-
fn=run_lora,
|
105 |
-
inputs=[prompt, selected_state],
|
106 |
-
outputs=[result]
|
107 |
-
)
|
108 |
-
button.click(
|
109 |
fn=run_lora,
|
110 |
-
inputs=[prompt, selected_state],
|
111 |
outputs=[result]
|
112 |
)
|
113 |
|
114 |
-
app.queue
|
115 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import json
|
|
|
3 |
import logging
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
7 |
+
import spaces
|
|
|
8 |
|
9 |
+
# Load LoRAs from JSON file
|
10 |
with open('loras.json', 'r') as f:
|
11 |
loras = json.load(f)
|
12 |
|
13 |
+
# Initialize the base model
|
14 |
+
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
|
16 |
+
pipe.to("cuda")
|
17 |
+
|
18 |
def update_selection(selected_state: gr.SelectData):
|
|
|
19 |
selected_lora_index = selected_state.index
|
20 |
selected_lora = loras[selected_lora_index]
|
21 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
|
|
23 |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
24 |
return (
|
25 |
gr.update(placeholder=new_placeholder),
|
26 |
+
updated_text,
|
27 |
selected_state
|
28 |
)
|
29 |
|
30 |
+
@spaces.GPU
|
31 |
+
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_state, scheduler):
|
|
|
32 |
if not selected_state:
|
33 |
+
raise gr.Error("You must select a LoRA before proceeding.")
|
|
|
34 |
|
35 |
+
selected_lora_index = selected_state.index
|
36 |
selected_lora = loras[selected_lora_index]
|
37 |
+
lora_path = selected_lora["repo"]
|
38 |
trigger_word = selected_lora["trigger_word"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Load LoRA weights
|
41 |
+
pipe.load_lora_weights(lora_path)
|
42 |
+
|
43 |
+
# Set scheduler
|
44 |
+
if scheduler == "Euler":
|
45 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
46 |
+
elif scheduler == "DPM++ 2M":
|
47 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
48 |
+
|
49 |
+
# Generate image
|
50 |
+
image = pipe(
|
51 |
+
prompt=f"{prompt} {trigger_word}",
|
52 |
+
negative_prompt=negative_prompt,
|
53 |
+
num_inference_steps=steps,
|
54 |
+
guidance_scale=cfg_scale,
|
55 |
+
).images[0]
|
56 |
|
57 |
+
# Unload LoRA weights
|
58 |
+
pipe.unload_lora_weights()
|
59 |
+
|
60 |
+
return image
|
61 |
|
62 |
with gr.Blocks(css="custom.css") as app:
|
63 |
+
gr.Markdown("# artificialguybr LoRA portfolio")
|
64 |
+
gr.Markdown(
|
65 |
+
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
|
66 |
+
"**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
|
67 |
+
"Special thanks to Hugging Face for their Diffusers library and Spaces platform."
|
|
|
|
|
68 |
)
|
69 |
+
|
70 |
selected_state = gr.State()
|
71 |
+
|
72 |
with gr.Row():
|
73 |
gallery = gr.Gallery(
|
74 |
[(item["image"], item["title"]) for item in loras],
|
|
|
76 |
allow_preview=False,
|
77 |
columns=3
|
78 |
)
|
79 |
+
|
80 |
with gr.Column():
|
81 |
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
|
82 |
+
selected_info = gr.Markdown("")
|
83 |
+
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
|
84 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
|
85 |
+
|
86 |
with gr.Row():
|
87 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
|
88 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
|
89 |
+
|
90 |
+
scheduler = gr.Dropdown(label="Scheduler", choices=["Euler", "DPM++ 2M"], value="Euler")
|
91 |
+
|
92 |
+
generate_button = gr.Button("Generate")
|
93 |
+
result = gr.Image(label="Generated Image")
|
94 |
|
95 |
+
gallery.select(update_selection, outputs=[prompt, selected_info, selected_state])
|
96 |
+
|
97 |
+
generate_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
fn=run_lora,
|
99 |
+
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_state, scheduler],
|
100 |
outputs=[result]
|
101 |
)
|
102 |
|
103 |
+
app.queue()
|
104 |
+
app.launch()
|