Spaces:
Running
Running
File size: 2,816 Bytes
54d68f7 da1b766 d35c749 54d68f7 da1b766 d35c749 da1b766 d35c749 da1b766 54d68f7 da1b766 54d68f7 da1b766 54d68f7 da1b766 54d68f7 da1b766 54d68f7 da1b766 54d68f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import requests
import json
import PIL.Image
from io import BytesIO
import os
def generate_image(prompt):
# Define the API endpoint
apiUrl = os.getenv("API_URL")
token = os.getenv("API_TOKEN")
# Define the request headers
headers = {
"Content-Type": "application/json",
"token": "token"
}
# Define the request body
body = {
"mode": "url",
"model": "AOM3A1B_orangemixs.safetensors",
"tiling": False,
"batch_size": 1,
"prompt": prompt,
"negative_prompt": "worst quality, lowres",
"seed": 1234,
"scheduler": "Euler a",
"n_iter": 1,
"steps": 25,
"cfg": 11.0,
"offset_noise": 0.0,
"width": 512,
"height": 512,
"clip_skip": 1,
"loras": [{"name": "", "strength": 1.0}],
"embeddings": [{"name": "", "strength": 1.0}],
"vae": "vae-ft-mse-840000-ema-pruned.ckpt",
"restore_faces": False,
"fr_model": "CodeFormer",
"codeformer_weight": 0.5,
"enable_hr": False,
"denoising_strength": 0.75,
"hr_scale": 2,
"hr_upscale": "None",
"img2img_ref_img_type": "piece",
"img2img_resize_mode": 0,
"img2img_denoising_strength": 0.75,
"controlnet_enabled": False,
"controlnet_ref_img_type": "piece",
"controlnet_guessmode": False,
"controlnet_module": "canny",
"controlnet_model": "control_v11p_sd15_softedge",
"controlnet_weight": 1,
"controlnet_guidance_start": 0,
"controlnet_guidance_end": 1,
"controlnet_ref_img_url": "https://upload.wikimedia.org/wikipedia/commons/d/d1/Image_not_available.png",
"controlnet_mask": [],
"controlnet_resize_mode": "Scale to Fit (Inner Fit)",
"controlnet_lowvram": False,
"controlnet_processor_res": 512,
"controlnet_threshold_a": 100,
"controlnet_threshold_b": 200
}
# Send the request
response = requests.post(apiUrl, headers=headers, data=json.dumps(body))
# Check the response status
if response.status_code == 200:
# Get the image URL from the response
image_url = json.loads(response.text)['results'][0]
# Get the image from the URL
image_response = requests.get(image_url)
image = PIL.Image.open(BytesIO(image_response.content))
return image
else:
raise Exception("API request failed with status code " + str(response.status_code))
# Define the Gradio interface
iface = gr.Interface(
fn=generate_image,
inputs="text",
outputs="image",
title="Freedom Demonstration",
description="Enter a prompt and generate an image.",
allow_flagging=False
)
# Launch the app
iface.launch() |