Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,250 Bytes
da0e3ab 73fd4c0 ed64e04 80b43a8 73fd4c0 fbd6bad 73fd4c0 cf7b168 739fd69 ae3f094 7b3eb41 73fd4c0 2d49e86 9e19d29 fbd6bad 3364e9c 80b43a8 2275971 80b43a8 45a4010 80b43a8 ac401be 992f837 45a4010 10ac59a 233c677 80b43a8 233c677 0cab5bf 233c677 0cab5bf 233c677 0cab5bf 233c677 fbd6bad 902b7eb 80b43a8 233c677 4eae89a 9462754 4eae89a 43edaa1 233c677 80b43a8 233c677 80b43a8 233c677 80b43a8 892ff2a 3364e9c 6312799 73fd4c0 3364e9c b0de989 73fd4c0 3364e9c c3f9f52 4bc5468 c3f9f52 73fd4c0 3364e9c 4bc5468 45a4010 3364e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import tempfile
import gradio as gr
import subprocess
import os, stat
import uuid
from googletrans import Translator
from TTS.api import TTS
import ffmpeg
from faster_whisper import WhisperModel
from scipy.signal import wiener
import soundfile as sf
from pydub import AudioSegment
import numpy as np
import librosa
from zipfile import ZipFile
import shlex
import cv2
import torch
import torchvision
from tqdm import tqdm
from numba import jit
os.environ["COQUI_TOS_AGREED"] = "1"
ZipFile("ffmpeg.zip").extractall()
st = os.stat('ffmpeg')
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
#Whisper
model_size = "small"
model = WhisperModel(model_size, device="cuda", compute_type="int8")
def process_video(radio, video, target_language):
# Check video duration
video_info = ffmpeg.probe(video)
video_duration = float(video_info['streams'][0]['duration'])
if video_duration > 90:
return gr.Interface.Warnings("Video duration exceeds 1 minute and 30 seconds. Please upload a shorter video.")
if target_language is None:
return gr.Interface.Warnings("Please select a Target Language for Dubbing.")
run_uuid = uuid.uuid4().hex[:6]
output_filename = f"{run_uuid}_resized_video.mp4"
#ffmpeg.input(video).output(output_filename, vf='scale=-1:720:force_original_aspect_ratio=decrease').run()
ffmpeg.input(video).output(output_filename, vf='scale=-2:720').run()
video_path = output_filename
if not os.path.exists(video_path):
return f"Error: {video_path} does not exist."
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run()
#y, sr = sf.read(f"{run_uuid}_output_audio.wav")
#y = y.astype(np.float32)
#y_denoised = wiener(y)
#sf.write(f"{run_uuid}_output_audio_denoised.wav", y_denoised, sr)
#sound = AudioSegment.from_file(f"{run_uuid}_output_audio_denoised.wav", format="wav")
#sound = sound.apply_gain(0)
#sound = sound.low_pass_filter(3000).high_pass_filter(100)
#sound.export(f"{run_uuid}_output_audio_processed.wav", format="wav")
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
segments, info = model.transcribe(f"{run_uuid}_output_audio_final.wav", beam_size=5)
whisper_text = " ".join(segment.text for segment in segments)
whisper_language = info.language
print(whisper_text)
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
target_language_code = language_mapping[target_language]
translator = Translator()
try:
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
print(translated_text)
except AttributeError as e:
print("Failed to translate text. Likely an issue with token extraction in the Google Translate API.")
translated_text = "Translation failed due to API issue."
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
tts.to('cuda')
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
pad_top = 0
pad_bottom = 15
pad_left = 0
pad_right = 0
rescaleFactor = 1
video_path_fix = video_path
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path_fix)} --audio '{run_uuid}_output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile '{run_uuid}_output_video.mp4'"
subprocess.run(cmd, shell=True)
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
output_video_path = f"{run_uuid}_output_video.mp4"
# Cleanup: Delete all generated files except the final output video
files_to_delete = [
f"{run_uuid}_resized_video.mp4",
f"{run_uuid}_output_audio.wav",
f"{run_uuid}_output_audio_final.wav",
f"{run_uuid}_output_synth.wav"
]
for file in files_to_delete:
try:
os.remove(file)
except FileNotFoundError:
print(f"File {file} not found for deletion.")
return output_video_path
def swap(radio):
if(radio == "Upload"):
return gr.update(source="upload")
else:
return gr.update(source="webcam")
video = gr.Video()
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
iface = gr.Interface(
fn=process_video,
inputs=[
radio,
video,
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish")
],
outputs=gr.Video(),
live=False,
title="AI Video Dubbing",
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code.""",
allow_flagging=False
)
with gr.Blocks() as demo:
iface.render()
radio.change(swap, inputs=[radio], outputs=video)
gr.Markdown("""
**Note:**
- Video limit is 1 minute. It will dubbling all people using just one voice.
- Generation may take up to 5 minutes.
- The tool uses open-source models for all models. It's a alpha version.
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
""")
demo.queue(concurrency_count=2, max_size=15)
demo.launch() |