Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,486 Bytes
46a75d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
{
"cells": [
{
"cell_type": "markdown",
"id": "45ea3ef5",
"metadata": {
"tags": []
},
"source": [
"# Easy Inferencing with πΈ TTS β‘\n",
"\n",
"#### You want to quicly synthesize speech using Coqui πΈ TTS model?\n",
"\n",
"π‘: Grab a pre-trained model and use it to synthesize speech using any speaker voice, including yours! β‘\n",
"\n",
"πΈ TTS comes with a list of pretrained models and speaker voices. You can even start a local demo server that you can open it on your favorite web browser and π£οΈ .\n",
"\n",
"In this notebook, we will: \n",
"```\n",
"1. List available pre-trained πΈ TTS models\n",
"2. Run a πΈ TTS model\n",
"3. Listen to the synthesized wave π£\n",
"4. Run multispeaker πΈ TTS model \n",
"```\n",
"So, let's jump right in!\n"
]
},
{
"cell_type": "markdown",
"id": "a1e5c2a5-46eb-42fd-b550-2a052546857e",
"metadata": {},
"source": [
"## Install πΈ TTS β¬οΈ"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa2aec77",
"metadata": {},
"outputs": [],
"source": [
"! pip install -U pip\n",
"! pip install TTS"
]
},
{
"cell_type": "markdown",
"id": "8c07a273",
"metadata": {},
"source": [
"## β
List available pre-trained πΈ TTS models\n",
"\n",
"Coqui πΈTTS comes with a list of pretrained models for different model types (ex: TTS, vocoder), languages, datasets used for training and architectures. \n",
"\n",
"You can either use your own model or the release models under πΈTTS.\n",
"\n",
"Use `tts --list_models` to find out the availble models.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "608d203f",
"metadata": {},
"outputs": [],
"source": [
"! tts --list_models"
]
},
{
"cell_type": "markdown",
"id": "ed9dd7ab",
"metadata": {},
"source": [
"## β
Run a πΈ TTS model\n",
"\n",
"#### **First things first**: Using a release model and default vocoder:\n",
"\n",
"You can simply copy the full model name from the list above and use it \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc9e4608-16ec-4dcd-bd6b-bd10d62286f8",
"metadata": {},
"outputs": [],
"source": [
"!tts --text \"hello world\" \\\n",
"--model_name \"tts_models/en/ljspeech/glow-tts\" \\\n",
"--out_path output.wav\n"
]
},
{
"cell_type": "markdown",
"id": "0ca2cb14-1aba-400e-a219-8ce44d9410be",
"metadata": {},
"source": [
"## π£ Listen to the synthesized wave π£"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fe63ef4-9284-4461-9dda-1ca7483a8f9b",
"metadata": {},
"outputs": [],
"source": [
"import IPython\n",
"IPython.display.Audio(\"output.wav\")"
]
},
{
"cell_type": "markdown",
"id": "5e67d178-1ebe-49c7-9a47-0593251bdb96",
"metadata": {},
"source": [
"### **Second things second**:\n",
"\n",
"πΆ A TTS model can be either trained on a single speaker voice or multispeaker voices. This training choice is directly reflected on the inference ability and the available speaker voices that can be used to synthesize speech. \n",
"\n",
"πΆ If you want to run a multispeaker model from the released models list, you can first check the speaker ids using `--list_speaker_idx` flag and use this speaker voice to synthesize speech."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87b18839-f750-4a61-bbb0-c964acaecab2",
"metadata": {},
"outputs": [],
"source": [
"# list the possible speaker IDs.\n",
"!tts --model_name \"tts_models/en/vctk/vits\" \\\n",
"--list_speaker_idxs \n"
]
},
{
"cell_type": "markdown",
"id": "c4365a9d-f922-4b14-88b0-d2b22a245b2e",
"metadata": {},
"source": [
"## π¬ Synthesize speech using speaker ID π¬"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52be0403-d13e-4d9b-99c2-c10b85154063",
"metadata": {},
"outputs": [],
"source": [
"!tts --text \"Trying out specific speaker voice\"\\\n",
"--out_path spkr-out.wav --model_name \"tts_models/en/vctk/vits\" \\\n",
"--speaker_idx \"p341\""
]
},
{
"cell_type": "markdown",
"id": "894a560a-f9c8-48ce-aaa6-afdf516c01f6",
"metadata": {},
"source": [
"## π£ Listen to the synthesized speaker specific wave π£"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ed485b0a-dfd5-4a7e-a571-ebf74bdfc41d",
"metadata": {},
"outputs": [],
"source": [
"import IPython\n",
"IPython.display.Audio(\"spkr-out.wav\")"
]
},
{
"cell_type": "markdown",
"id": "84636a38-097e-4dad-933b-0aeaee650e92",
"metadata": {},
"source": [
"πΆ If you want to use an external speaker to synthesize speech, you need to supply `--speaker_wav` flag along with an external speaker encoder path and config file, as follows:"
]
},
{
"cell_type": "markdown",
"id": "cbdb15fa-123a-4282-a127-87b50dc70365",
"metadata": {},
"source": [
"First we need to get the speaker encoder model, its config and a referece `speaker_wav`"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e54f1b13-560c-4fed-bafd-e38ec9712359",
"metadata": {},
"outputs": [],
"source": [
"!wget https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json\n",
"!wget https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar\n",
"!wget https://github.com/coqui-ai/TTS/raw/speaker_encoder_model/tests/data/ljspeech/wavs/LJ001-0001.wav"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6dac1912-5054-4a68-8357-6d20fd99cb10",
"metadata": {},
"outputs": [],
"source": [
"!tts --model_name tts_models/multilingual/multi-dataset/your_tts \\\n",
"--encoder_path model_se.pth.tar \\\n",
"--encoder_config config_se.json \\\n",
"--speaker_wav LJ001-0001.wav \\\n",
"--text \"Are we not allowed to dim the lights so people can see that a bit better?\"\\\n",
"--out_path spkr-out.wav \\\n",
"--language_idx \"en\""
]
},
{
"cell_type": "markdown",
"id": "92ddce58-8aca-4f69-84c3-645ae1b12e7d",
"metadata": {},
"source": [
"## π£ Listen to the synthesized speaker specific wave π£"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cc889adc-9c71-4232-8e85-bfc8f76476f4",
"metadata": {},
"outputs": [],
"source": [
"import IPython\n",
"IPython.display.Audio(\"spkr-out.wav\")"
]
},
{
"cell_type": "markdown",
"id": "29101d01-0b01-4153-a216-5dae415a5dd6",
"metadata": {},
"source": [
"## π Congratulations! π You now know how to use a TTS model to synthesize speech! \n",
"Follow up with the next tutorials to learn more adnavced material."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|