Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,448 Bytes
46a75d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import unittest
import torch as T
from TTS.tts.layers.tacotron.tacotron import CBHG, Decoder, Encoder, Prenet
# pylint: disable=unused-variable
class PrenetTests(unittest.TestCase):
def test_in_out(self): # pylint: disable=no-self-use
layer = Prenet(128, out_features=[256, 128])
dummy_input = T.rand(4, 128)
print(layer)
output = layer(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 128
class CBHGTests(unittest.TestCase):
def test_in_out(self):
# pylint: disable=attribute-defined-outside-init
layer = self.cbhg = CBHG(
128,
K=8,
conv_bank_features=80,
conv_projections=[160, 128],
highway_features=80,
gru_features=80,
num_highways=4,
)
# B x D x T
dummy_input = T.rand(4, 128, 8)
print(layer)
output = layer(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 8
assert output.shape[2] == 160
class DecoderTests(unittest.TestCase):
@staticmethod
def test_in_out():
layer = Decoder(
in_channels=256,
frame_channels=80,
r=2,
memory_size=4,
attn_windowing=False,
attn_norm="sigmoid",
attn_K=5,
attn_type="original",
prenet_type="original",
prenet_dropout=True,
forward_attn=True,
trans_agent=True,
forward_attn_mask=True,
location_attn=True,
separate_stopnet=True,
max_decoder_steps=50,
)
dummy_input = T.rand(4, 8, 256)
dummy_memory = T.rand(4, 2, 80)
output, alignment, stop_tokens = layer(dummy_input, dummy_memory, mask=None)
assert output.shape[0] == 4
assert output.shape[1] == 80, "size not {}".format(output.shape[1])
assert output.shape[2] == 2, "size not {}".format(output.shape[2])
assert stop_tokens.shape[0] == 4
class EncoderTests(unittest.TestCase):
def test_in_out(self): # pylint: disable=no-self-use
layer = Encoder(128)
dummy_input = T.rand(4, 8, 128)
print(layer)
output = layer(dummy_input)
print(output.shape)
assert output.shape[0] == 4
assert output.shape[1] == 8
assert output.shape[2] == 256 # 128 * 2 BiRNN
|