video-dubbing / app.py
artificialguybr's picture
Update app.py
80b43a8
raw
history blame
4.88 kB
import tempfile
import gradio as gr
import subprocess
import os, stat
import uuid
from googletrans import Translator
from TTS.api import TTS
import ffmpeg
import whisper
from scipy.signal import wiener
import soundfile as sf
from pydub import AudioSegment
import numpy as np
import librosa
from zipfile import ZipFile
import shlex
import cv2
import torch
import torchvision
from tqdm import tqdm
from numba import jit
os.environ["COQUI_TOS_AGREED"] = "1"
ZipFile("ffmpeg.zip").extractall()
st = os.stat('ffmpeg')
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
def process_video(video, high_quality, target_language):
# Check video duration
video_info = ffmpeg.probe(video)
video_duration = float(video_info['streams'][0]['duration'])
if video_duration > 90:
return gr.Interface.Warnings("Video duration exceeds 1 minute and 30 seconds. Please upload a shorter video.")
run_uuid = uuid.uuid4().hex[:6]
output_filename = f"{run_uuid}_resized_video.mp4"
if high_quality:
ffmpeg.input(video).output(output_filename, vf='scale=-1:720').run()
video_path = output_filename
else:
video_path = video
if not os.path.exists(video_path):
return f"Error: {video_path} does not exist."
ffmpeg.input(video_path).output(f"{run_uuid}_output_audio.wav", acodec='pcm_s24le', ar=48000, map='a').run()
y, sr = sf.read(f"{run_uuid}_output_audio.wav")
y = y.astype(np.float32)
y_denoised = wiener(y)
sf.write(f"{run_uuid}_output_audio_denoised.wav", y_denoised, sr)
sound = AudioSegment.from_file(f"{run_uuid}_output_audio_denoised.wav", format="wav")
sound = sound.apply_gain(0)
sound = sound.low_pass_filter(3000).high_pass_filter(100)
sound.export(f"{run_uuid}_output_audio_processed.wav", format="wav")
shell_command = f"ffmpeg -y -i {run_uuid}_output_audio_processed.wav -af lowpass=3000,highpass=100 {run_uuid}_output_audio_final.wav".split(" ")
subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
model = whisper.load_model("base")
result = model.transcribe(f"{run_uuid}_output_audio_final.wav")
whisper_text = result["text"]
whisper_language = result['language']
print(whisper_text)
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
target_language_code = language_mapping[target_language]
translator = Translator()
try:
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
print(translated_text)
except AttributeError as e:
print("Failed to translate text. Likely an issue with token extraction in the Google Translate API.")
translated_text = "Translation failed due to API issue."
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1")
tts.to('cuda')
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
pad_top = 0
pad_bottom = 15
pad_left = 0
pad_right = 0
rescaleFactor = 1
video_path_fix = video_path
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path_fix)} --audio '{run_uuid}_output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile '{run_uuid}_output_video.mp4'"
subprocess.run(cmd, shell=True)
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
raise FileNotFoundError(f"Error: {run_uuid}_output_video.mp4 was not generated.")
output_video_path = f"{run_uuid}_output_video.mp4"
# Cleanup: Delete all generated files except the final output video
files_to_delete = [
f"{run_uuid}_resized_video.mp4",
f"{run_uuid}_output_audio.wav",
f"{run_uuid}_output_audio_denoised.wav",
f"{run_uuid}_output_audio_processed.wav",
f"{run_uuid}_output_audio_final.wav",
f"{run_uuid}_output_synth.wav"
]
for file in files_to_delete:
try:
os.remove(file)
except FileNotFoundError:
print(f"File {file} not found for deletion.")
return output_video_path
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.inputs.Checkbox(label="High Quality"),
gr.inputs.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing")
],
outputs=gr.outputs.Video(),
live=False
)
iface.launch()