Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.config import BaseAudioConfig, BaseDatasetConfig | |
from TTS.tts.configs.fast_pitch_config import FastPitchConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.forward_tts import ForwardTTS | |
from TTS.tts.utils.speakers import SpeakerManager | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio import AudioProcessor | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
dataset_config = BaseDatasetConfig(formatter="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) | |
audio_config = BaseAudioConfig( | |
sample_rate=22050, | |
do_trim_silence=True, | |
trim_db=23.0, | |
signal_norm=False, | |
mel_fmin=0.0, | |
mel_fmax=8000, | |
spec_gain=1.0, | |
log_func="np.log", | |
ref_level_db=20, | |
preemphasis=0.0, | |
) | |
config = FastPitchConfig( | |
run_name="fast_pitch_ljspeech", | |
audio=audio_config, | |
batch_size=32, | |
eval_batch_size=16, | |
num_loader_workers=8, | |
num_eval_loader_workers=4, | |
compute_input_seq_cache=True, | |
precompute_num_workers=4, | |
compute_f0=True, | |
f0_cache_path=os.path.join(output_path, "f0_cache"), | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="english_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
print_step=50, | |
print_eval=False, | |
mixed_precision=False, | |
min_text_len=0, | |
max_text_len=500, | |
min_audio_len=0, | |
max_audio_len=500000, | |
output_path=output_path, | |
datasets=[dataset_config], | |
use_speaker_embedding=True, | |
) | |
# INITIALIZE THE AUDIO PROCESSOR | |
# Audio processor is used for feature extraction and audio I/O. | |
# It mainly serves to the dataloader and the training loggers. | |
ap = AudioProcessor.init_from_config(config) | |
# INITIALIZE THE TOKENIZER | |
# Tokenizer is used to convert text to sequences of token IDs. | |
# If characters are not defined in the config, default characters are passed to the config | |
tokenizer, config = TTSTokenizer.init_from_config(config) | |
# LOAD DATA SAMPLES | |
# Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
# You can define your custom sample loader returning the list of samples. | |
# Or define your custom formatter and pass it to the `load_tts_samples`. | |
# Check `TTS.tts.datasets.load_tts_samples` for more details. | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
# init speaker manager for multi-speaker training | |
# it maps speaker-id to speaker-name in the model and data-loader | |
speaker_manager = SpeakerManager() | |
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") | |
config.model_args.num_speakers = speaker_manager.num_speakers | |
# init model | |
model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager) | |
# INITIALIZE THE TRAINER | |
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, | |
# distributed training, etc. | |
trainer = Trainer( | |
TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
) | |
# AND... 3,2,1... 🚀 | |
trainer.fit() | |