Spaces:
Running
on
Zero
Running
on
Zero
artificialguybr
commited on
Commit
•
b361117
1
Parent(s):
7f52f79
Update app.py
Browse files
app.py
CHANGED
@@ -22,24 +22,18 @@ from tqdm import tqdm
|
|
22 |
from numba import jit
|
23 |
from huggingface_hub import HfApi
|
24 |
|
25 |
-
# Environment setup
|
26 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
27 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
28 |
api = HfApi(token=HF_TOKEN)
|
29 |
repo_id = "artificialguybr/video-dubbing"
|
30 |
-
|
31 |
-
# Extract ffmpeg
|
32 |
ZipFile("ffmpeg.zip").extractall()
|
33 |
st = os.stat('ffmpeg')
|
34 |
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
35 |
|
36 |
-
#
|
37 |
model_size = "small"
|
38 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
39 |
|
40 |
-
# Initialize TTS model
|
41 |
-
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
42 |
-
|
43 |
def check_for_faces(video_path):
|
44 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
45 |
cap = cv2.VideoCapture(video_path)
|
@@ -57,17 +51,6 @@ def check_for_faces(video_path):
|
|
57 |
|
58 |
return False
|
59 |
|
60 |
-
@spaces.GPU
|
61 |
-
def transcribe_audio(audio_path):
|
62 |
-
segments, info = model.transcribe(audio_path, beam_size=5)
|
63 |
-
whisper_text = " ".join(segment.text for segment in segments)
|
64 |
-
whisper_language = info.language
|
65 |
-
return whisper_text, whisper_language
|
66 |
-
|
67 |
-
@spaces.GPU
|
68 |
-
def generate_tts(text, speaker_wav, language_code):
|
69 |
-
tts.tts_to_file(text, speaker_wav=speaker_wav, file_path="output_synth.wav", language=language_code)
|
70 |
-
|
71 |
@spaces.GPU
|
72 |
def process_video(radio, video, target_language, has_closeup_face):
|
73 |
if target_language is None:
|
@@ -96,12 +79,14 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
96 |
|
97 |
print("Attempting to transcribe with Whisper...")
|
98 |
try:
|
99 |
-
|
|
|
|
|
100 |
print(f"Transcription successful: {whisper_text}")
|
101 |
except RuntimeError as e:
|
102 |
print(f"RuntimeError encountered: {str(e)}")
|
103 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
104 |
-
gr.Warning("Error. Space
|
105 |
api.restart_space(repo_id=repo_id)
|
106 |
|
107 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
@@ -110,19 +95,34 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
110 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
111 |
print(translated_text)
|
112 |
|
113 |
-
|
|
|
|
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
if has_closeup_face:
|
116 |
try:
|
117 |
-
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '
|
118 |
subprocess.run(cmd, shell=True, check=True)
|
119 |
except subprocess.CalledProcessError as e:
|
120 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
121 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
122 |
-
cmd = f"ffmpeg -i {video_path} -i
|
123 |
subprocess.run(cmd, shell=True)
|
124 |
else:
|
125 |
-
cmd = f"ffmpeg -i {video_path} -i
|
126 |
subprocess.run(cmd, shell=True)
|
127 |
|
128 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
@@ -130,12 +130,11 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
130 |
|
131 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
132 |
|
133 |
-
# Cleanup
|
134 |
files_to_delete = [
|
135 |
f"{run_uuid}_resized_video.mp4",
|
136 |
f"{run_uuid}_output_audio.wav",
|
137 |
f"{run_uuid}_output_audio_final.wav",
|
138 |
-
"
|
139 |
]
|
140 |
for file in files_to_delete:
|
141 |
try:
|
@@ -144,11 +143,13 @@ def process_video(radio, video, target_language, has_closeup_face):
|
|
144 |
print(f"File {file} not found for deletion.")
|
145 |
|
146 |
return output_video_path
|
147 |
-
|
148 |
def swap(radio):
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
152 |
video = gr.Video()
|
153 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
154 |
iface = gr.Interface(
|
@@ -157,7 +158,10 @@ iface = gr.Interface(
|
|
157 |
radio,
|
158 |
video,
|
159 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
160 |
-
gr.Checkbox(
|
|
|
|
|
|
|
161 |
],
|
162 |
outputs=gr.Video(),
|
163 |
live=False,
|
@@ -165,20 +169,18 @@ iface = gr.Interface(
|
|
165 |
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
|
166 |
allow_flagging=False
|
167 |
)
|
168 |
-
|
169 |
with gr.Blocks() as demo:
|
170 |
iface.render()
|
171 |
radio.change(swap, inputs=[radio], outputs=video)
|
172 |
gr.Markdown("""
|
173 |
**Note:**
|
174 |
-
- Video limit is 1 minute. It will
|
175 |
- Generation may take up to 5 minutes.
|
176 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
|
177 |
-
- The tool uses open-source models for all models. It's
|
178 |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
|
179 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
180 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
181 |
""")
|
182 |
-
|
183 |
demo.queue(concurrency_count=1, max_size=15)
|
184 |
demo.launch()
|
|
|
22 |
from numba import jit
|
23 |
from huggingface_hub import HfApi
|
24 |
|
|
|
25 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
26 |
os.environ["COQUI_TOS_AGREED"] = "1"
|
27 |
api = HfApi(token=HF_TOKEN)
|
28 |
repo_id = "artificialguybr/video-dubbing"
|
|
|
|
|
29 |
ZipFile("ffmpeg.zip").extractall()
|
30 |
st = os.stat('ffmpeg')
|
31 |
os.chmod('ffmpeg', st.st_mode | stat.S_IEXEC)
|
32 |
|
33 |
+
#Whisper
|
34 |
model_size = "small"
|
35 |
model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
36 |
|
|
|
|
|
|
|
37 |
def check_for_faces(video_path):
|
38 |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
39 |
cap = cv2.VideoCapture(video_path)
|
|
|
51 |
|
52 |
return False
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
@spaces.GPU
|
55 |
def process_video(radio, video, target_language, has_closeup_face):
|
56 |
if target_language is None:
|
|
|
79 |
|
80 |
print("Attempting to transcribe with Whisper...")
|
81 |
try:
|
82 |
+
segments, info = model.transcribe(f"{run_uuid}_output_audio_final.wav", beam_size=5)
|
83 |
+
whisper_text = " ".join(segment.text for segment in segments)
|
84 |
+
whisper_language = info.language
|
85 |
print(f"Transcription successful: {whisper_text}")
|
86 |
except RuntimeError as e:
|
87 |
print(f"RuntimeError encountered: {str(e)}")
|
88 |
if "CUDA failed with error device-side assert triggered" in str(e):
|
89 |
+
gr.Warning("Error. Space need to restart. Please retry in a minute")
|
90 |
api.restart_space(repo_id=repo_id)
|
91 |
|
92 |
language_mapping = {'English': 'en', 'Spanish': 'es', 'French': 'fr', 'German': 'de', 'Italian': 'it', 'Portuguese': 'pt', 'Polish': 'pl', 'Turkish': 'tr', 'Russian': 'ru', 'Dutch': 'nl', 'Czech': 'cs', 'Arabic': 'ar', 'Chinese (Simplified)': 'zh-cn'}
|
|
|
95 |
translated_text = translator.translate(whisper_text, src=whisper_language, dest=target_language_code).text
|
96 |
print(translated_text)
|
97 |
|
98 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
|
99 |
+
tts.to('cuda')
|
100 |
+
tts.tts_to_file(translated_text, speaker_wav=f"{run_uuid}_output_audio_final.wav", file_path=f"{run_uuid}_output_synth.wav", language=target_language_code)
|
101 |
|
102 |
+
pad_top = 0
|
103 |
+
pad_bottom = 15
|
104 |
+
pad_left = 0
|
105 |
+
pad_right = 0
|
106 |
+
rescaleFactor = 1
|
107 |
+
|
108 |
+
video_path_fix = video_path
|
109 |
+
|
110 |
+
if has_closeup_face:
|
111 |
+
has_face = True
|
112 |
+
else:
|
113 |
+
has_face = check_for_faces(video_path)
|
114 |
+
|
115 |
if has_closeup_face:
|
116 |
try:
|
117 |
+
cmd = f"python Wav2Lip/inference.py --checkpoint_path 'Wav2Lip/checkpoints/wav2lip_gan.pth' --face {shlex.quote(video_path)} --audio '{run_uuid}_output_synth.wav' --pads {pad_top} {pad_bottom} {pad_left} {pad_right} --resize_factor {rescaleFactor} --nosmooth --outfile '{run_uuid}_output_video.mp4'"
|
118 |
subprocess.run(cmd, shell=True, check=True)
|
119 |
except subprocess.CalledProcessError as e:
|
120 |
if "Face not detected! Ensure the video contains a face in all the frames." in str(e.stderr):
|
121 |
gr.Warning("Wav2lip didn't detect a face. Please try again with the option disabled.")
|
122 |
+
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
|
123 |
subprocess.run(cmd, shell=True)
|
124 |
else:
|
125 |
+
cmd = f"ffmpeg -i {video_path} -i {run_uuid}_output_synth.wav -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 {run_uuid}_output_video.mp4"
|
126 |
subprocess.run(cmd, shell=True)
|
127 |
|
128 |
if not os.path.exists(f"{run_uuid}_output_video.mp4"):
|
|
|
130 |
|
131 |
output_video_path = f"{run_uuid}_output_video.mp4"
|
132 |
|
|
|
133 |
files_to_delete = [
|
134 |
f"{run_uuid}_resized_video.mp4",
|
135 |
f"{run_uuid}_output_audio.wav",
|
136 |
f"{run_uuid}_output_audio_final.wav",
|
137 |
+
f"{run_uuid}_output_synth.wav"
|
138 |
]
|
139 |
for file in files_to_delete:
|
140 |
try:
|
|
|
143 |
print(f"File {file} not found for deletion.")
|
144 |
|
145 |
return output_video_path
|
146 |
+
|
147 |
def swap(radio):
|
148 |
+
if(radio == "Upload"):
|
149 |
+
return gr.update(source="upload")
|
150 |
+
else:
|
151 |
+
return gr.update(source="webcam")
|
152 |
+
|
153 |
video = gr.Video()
|
154 |
radio = gr.Radio(["Upload", "Record"], value="Upload", show_label=False)
|
155 |
iface = gr.Interface(
|
|
|
158 |
radio,
|
159 |
video,
|
160 |
gr.Dropdown(choices=["English", "Spanish", "French", "German", "Italian", "Portuguese", "Polish", "Turkish", "Russian", "Dutch", "Czech", "Arabic", "Chinese (Simplified)"], label="Target Language for Dubbing", value="Spanish"),
|
161 |
+
gr.Checkbox(
|
162 |
+
label="Video has a close-up face. Use Wav2lip.",
|
163 |
+
value=False,
|
164 |
+
info="Say if video have close-up face. For Wav2lip. Will not work if checked wrongly.")
|
165 |
],
|
166 |
outputs=gr.Video(),
|
167 |
live=False,
|
|
|
169 |
description="""This tool was developed by [@artificialguybr](https://twitter.com/artificialguybr) using entirely open-source tools. Special thanks to Hugging Face for the GPU support. Thanks [@yeswondwer](https://twitter.com/@yeswondwerr) for original code. Test the [Video Transcription and Translate](https://huggingface.co/spaces/artificialguybr/VIDEO-TRANSLATION-TRANSCRIPTION) space!""",
|
170 |
allow_flagging=False
|
171 |
)
|
|
|
172 |
with gr.Blocks() as demo:
|
173 |
iface.render()
|
174 |
radio.change(swap, inputs=[radio], outputs=video)
|
175 |
gr.Markdown("""
|
176 |
**Note:**
|
177 |
+
- Video limit is 1 minute. It will dubbling all people using just one voice.
|
178 |
- Generation may take up to 5 minutes.
|
179 |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
|
180 |
+
- The tool uses open-source models for all models. It's a alpha version.
|
181 |
- Quality can be improved but would require more processing time per video. For scalability and hardware limitations, speed was chosen, not just quality.
|
182 |
- If you need more than 1 minute, duplicate the Space and change the limit on app.py.
|
183 |
- If you incorrectly mark the 'Video has a close-up face' checkbox, the dubbing may not work as expected.
|
184 |
""")
|
|
|
185 |
demo.queue(concurrency_count=1, max_size=15)
|
186 |
demo.launch()
|