Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
3 |
import random
|
4 |
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
prompt,
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
|
|
|
53 |
|
|
|
54 |
examples = [
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
]
|
59 |
|
60 |
css = """
|
@@ -66,7 +91,7 @@ css = """
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image
|
70 |
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
@@ -81,74 +106,41 @@ with gr.Blocks(css=css) as demo:
|
|
81 |
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
-
with gr.Accordion("
|
85 |
-
|
86 |
-
label="
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
value=
|
98 |
)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
width = gr.Slider(
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
140 |
inputs=[
|
141 |
prompt,
|
142 |
-
|
143 |
-
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
],
|
150 |
-
outputs=[result
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
import aiohttp
|
4 |
+
import os
|
5 |
import random
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
+
# --- GLIF API Configuration ---
|
9 |
+
GLIF_API_TOKEN = os.getenv("GLIF_API_TOKEN0")
|
10 |
+
GLIF_API_URL = "https://simple-api.glif.app"
|
11 |
+
glif_token_id = 0
|
12 |
+
glif_tokens_tried = 0
|
13 |
+
no_of_accounts = 11
|
14 |
+
|
15 |
+
|
16 |
+
if not GLIF_API_TOKEN:
|
17 |
+
raise ValueError("GLIF_API_TOKEN must be set.")
|
18 |
+
|
19 |
+
|
20 |
+
# --- Asynchronous Image Generation Function ---
|
21 |
+
async def generate_image_async(prompt, aspect_ratio, style):
|
22 |
+
global glif_token_id
|
23 |
+
global GLIF_API_TOKEN
|
24 |
+
global glif_tokens_tried
|
25 |
+
global no_of_accounts
|
26 |
+
payload = {
|
27 |
+
"id": "cm3ugmzv2002gnckiosrwk6xi",
|
28 |
+
"inputs": [prompt, aspect_ratio, style],
|
29 |
+
}
|
30 |
+
headers = {"Authorization": f"Bearer {GLIF_API_TOKEN}"}
|
31 |
+
|
32 |
+
async with aiohttp.ClientSession() as session:
|
33 |
+
try:
|
34 |
+
async with session.post(
|
35 |
+
GLIF_API_URL, json=payload, headers=headers, timeout=15
|
36 |
+
) as response:
|
37 |
+
response.raise_for_status()
|
38 |
+
response_data = await response.json()
|
39 |
+
if "error" in response_data:
|
40 |
+
if 'error 429' in response_data['error']:
|
41 |
+
if glif_tokens_tried<no_of_accounts:
|
42 |
+
glif_token_id = (glif_token_id+1)%no_of_accounts
|
43 |
+
glif_tokens_tried+=1
|
44 |
+
GLIF_API_TOKEN = os.getenv(f"GLIF_API_TOKEN{glif_token_id}")
|
45 |
+
response_data = await generate_image_async(prompt, aspect_ratio, style)
|
46 |
+
glif_tokens_tried = 0
|
47 |
+
return response_data
|
48 |
+
response_data = "No credits available"
|
49 |
+
return response_data
|
50 |
+
elif "output" in response_data:
|
51 |
+
image_url = response_data["output"]
|
52 |
+
async with session.get(image_url) as image_response:
|
53 |
+
image_response.raise_for_status()
|
54 |
+
image_bytes = await image_response.read()
|
55 |
+
return image_bytes
|
56 |
+
else:
|
57 |
+
return "Error: Unexpected response from server"
|
58 |
+
|
59 |
+
except asyncio.TimeoutError:
|
60 |
+
return "Error: API request timed out."
|
61 |
+
except aiohttp.ClientError as e:
|
62 |
+
return f"API request failed: {e}"
|
63 |
+
except Exception as e:
|
64 |
+
return f"Exception:{e}"
|
65 |
+
|
66 |
+
# --- Gradio Interface Function ---
|
67 |
+
async def infer(
|
68 |
prompt,
|
69 |
+
aspect_ratio,
|
70 |
+
style,
|
71 |
+
progress=gr.Progress(track_tqdm=True)
|
|
|
|
|
|
|
|
|
|
|
72 |
):
|
73 |
+
|
74 |
+
image_bytes_or_error = await generate_image_async(prompt, aspect_ratio, style)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
return image_bytes_or_error
|
77 |
|
78 |
+
# --- Gradio UI Setup ---
|
79 |
examples = [
|
80 |
+
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "1:1", "anime"],
|
81 |
+
["An astronaut riding a green horse", "16:9", "realistic"],
|
82 |
+
["A delicious ceviche cheesecake slice", "4:3", "anime"],
|
83 |
]
|
84 |
|
85 |
css = """
|
|
|
91 |
|
92 |
with gr.Blocks(css=css) as demo:
|
93 |
with gr.Column(elem_id="col-container"):
|
94 |
+
gr.Markdown(" # GLIF Text-to-Image")
|
95 |
|
96 |
with gr.Row():
|
97 |
prompt = gr.Text(
|
|
|
106 |
|
107 |
result = gr.Image(label="Result", show_label=False)
|
108 |
|
109 |
+
with gr.Accordion("Settings", open=True):
|
110 |
+
aspect_ratio = gr.Dropdown(
|
111 |
+
label="Aspect Ratio",
|
112 |
+
choices=[
|
113 |
+
"1:1",
|
114 |
+
"3:4",
|
115 |
+
"4:3",
|
116 |
+
"9:16",
|
117 |
+
"16:9",
|
118 |
+
"9:21",
|
119 |
+
"21:9",
|
120 |
+
],
|
121 |
+
value="1:1",
|
122 |
)
|
123 |
+
style = gr.Dropdown(
|
124 |
+
label = "Style",
|
125 |
+
choices = [
|
126 |
+
"anime",
|
127 |
+
"realistic"
|
128 |
+
],
|
129 |
+
value = "anime"
|
130 |
)
|
131 |
|
132 |
+
gr.Examples(examples=examples, inputs=[prompt, aspect_ratio, style])
|
133 |
+
|
134 |
+
demo.on(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
triggers=[run_button.click, prompt.submit],
|
136 |
fn=infer,
|
137 |
inputs=[
|
138 |
prompt,
|
139 |
+
aspect_ratio,
|
140 |
+
style,
|
|
|
|
|
|
|
|
|
|
|
141 |
],
|
142 |
+
outputs=[result],
|
143 |
)
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
+
demo.launch()
|