artintel235 commited on
Commit
d7755ae
·
verified ·
1 Parent(s): e7d63fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -109
app.py CHANGED
@@ -1,60 +1,85 @@
1
  import gradio as gr
2
- import numpy as np
 
 
3
  import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
  ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
 
 
53
 
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
@@ -66,7 +91,7 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
@@ -81,74 +106,41 @@ with gr.Blocks(css=css) as demo:
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
 
 
 
 
 
 
 
90
  )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
  )
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
  inputs=[
141
  prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
  ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ import asyncio
3
+ import aiohttp
4
+ import os
5
  import random
6
 
 
 
 
7
 
8
+ # --- GLIF API Configuration ---
9
+ GLIF_API_TOKEN = os.getenv("GLIF_API_TOKEN0")
10
+ GLIF_API_URL = "https://simple-api.glif.app"
11
+ glif_token_id = 0
12
+ glif_tokens_tried = 0
13
+ no_of_accounts = 11
14
+
15
+
16
+ if not GLIF_API_TOKEN:
17
+ raise ValueError("GLIF_API_TOKEN must be set.")
18
+
19
+
20
+ # --- Asynchronous Image Generation Function ---
21
+ async def generate_image_async(prompt, aspect_ratio, style):
22
+ global glif_token_id
23
+ global GLIF_API_TOKEN
24
+ global glif_tokens_tried
25
+ global no_of_accounts
26
+ payload = {
27
+ "id": "cm3ugmzv2002gnckiosrwk6xi",
28
+ "inputs": [prompt, aspect_ratio, style],
29
+ }
30
+ headers = {"Authorization": f"Bearer {GLIF_API_TOKEN}"}
31
+
32
+ async with aiohttp.ClientSession() as session:
33
+ try:
34
+ async with session.post(
35
+ GLIF_API_URL, json=payload, headers=headers, timeout=15
36
+ ) as response:
37
+ response.raise_for_status()
38
+ response_data = await response.json()
39
+ if "error" in response_data:
40
+ if 'error 429' in response_data['error']:
41
+ if glif_tokens_tried<no_of_accounts:
42
+ glif_token_id = (glif_token_id+1)%no_of_accounts
43
+ glif_tokens_tried+=1
44
+ GLIF_API_TOKEN = os.getenv(f"GLIF_API_TOKEN{glif_token_id}")
45
+ response_data = await generate_image_async(prompt, aspect_ratio, style)
46
+ glif_tokens_tried = 0
47
+ return response_data
48
+ response_data = "No credits available"
49
+ return response_data
50
+ elif "output" in response_data:
51
+ image_url = response_data["output"]
52
+ async with session.get(image_url) as image_response:
53
+ image_response.raise_for_status()
54
+ image_bytes = await image_response.read()
55
+ return image_bytes
56
+ else:
57
+ return "Error: Unexpected response from server"
58
+
59
+ except asyncio.TimeoutError:
60
+ return "Error: API request timed out."
61
+ except aiohttp.ClientError as e:
62
+ return f"API request failed: {e}"
63
+ except Exception as e:
64
+ return f"Exception:{e}"
65
+
66
+ # --- Gradio Interface Function ---
67
+ async def infer(
68
  prompt,
69
+ aspect_ratio,
70
+ style,
71
+ progress=gr.Progress(track_tqdm=True)
 
 
 
 
 
72
  ):
73
+
74
+ image_bytes_or_error = await generate_image_async(prompt, aspect_ratio, style)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ return image_bytes_or_error
77
 
78
+ # --- Gradio UI Setup ---
79
  examples = [
80
+ ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "1:1", "anime"],
81
+ ["An astronaut riding a green horse", "16:9", "realistic"],
82
+ ["A delicious ceviche cheesecake slice", "4:3", "anime"],
83
  ]
84
 
85
  css = """
 
91
 
92
  with gr.Blocks(css=css) as demo:
93
  with gr.Column(elem_id="col-container"):
94
+ gr.Markdown(" # GLIF Text-to-Image")
95
 
96
  with gr.Row():
97
  prompt = gr.Text(
 
106
 
107
  result = gr.Image(label="Result", show_label=False)
108
 
109
+ with gr.Accordion("Settings", open=True):
110
+ aspect_ratio = gr.Dropdown(
111
+ label="Aspect Ratio",
112
+ choices=[
113
+ "1:1",
114
+ "3:4",
115
+ "4:3",
116
+ "9:16",
117
+ "16:9",
118
+ "9:21",
119
+ "21:9",
120
+ ],
121
+ value="1:1",
122
  )
123
+ style = gr.Dropdown(
124
+ label = "Style",
125
+ choices = [
126
+ "anime",
127
+ "realistic"
128
+ ],
129
+ value = "anime"
130
  )
131
 
132
+ gr.Examples(examples=examples, inputs=[prompt, aspect_ratio, style])
133
+
134
+ demo.on(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  triggers=[run_button.click, prompt.submit],
136
  fn=infer,
137
  inputs=[
138
  prompt,
139
+ aspect_ratio,
140
+ style,
 
 
 
 
 
141
  ],
142
+ outputs=[result],
143
  )
144
 
145
  if __name__ == "__main__":
146
+ demo.launch()