artyomboyko commited on
Commit
0bd883b
·
verified ·
1 Parent(s): 07551a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +212 -212
app.py CHANGED
@@ -1,213 +1,213 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- from huggingface_hub import login
8
- from datasets import load_dataset
9
- from dotenv import load_dotenv
10
-
11
- from agent import instantiate_agent
12
- from gaia_dataset import gaia_dataset, get_question
13
-
14
- # (Сохраните константы как есть)
15
- # --- Константы ---
16
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
17
-
18
- class BasicAgent:
19
-
20
- def __init__(self):
21
- print("BasicAgent initialized.")
22
- self.agent = instantiate_agent()
23
-
24
- print("Agent initialized successfully.")
25
-
26
- def __call__(self, question: str) -> str:
27
-
28
- print(f"Agent received question (first 50 chars): {question[:50]}...")
29
- fixed_answer = self.agent.run(question)
30
- print(f"Agent returning fixed answer: {fixed_answer}")
31
- return fixed_answer
32
-
33
- def run_and_submit_all( profile: gr.OAuthProfile | None):
34
- """
35
- Fetches all questions, runs the BasicAgent on them, submits all answers,
36
- and displays the results.
37
- """
38
- # --- Determine HF Space Runtime URL and Repo URL ---
39
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
40
- # space_id = "artyomboyko/Final_Assignment_Template" # Local inference only!
41
-
42
- if profile:
43
- username= f"{profile.username}"
44
- print(f"User logged in: {username}")
45
- else:
46
- print("User not logged in.")
47
- return "Please Login to Hugging Face with the button.", None
48
-
49
- api_url = DEFAULT_API_URL
50
- questions_url = f"{api_url}/questions"
51
- submit_url = f"{api_url}/submit"
52
-
53
- # 1. Instantiate Agent ( modify this part to create your agent)
54
- try:
55
- agent = BasicAgent()
56
- except Exception as e:
57
- print(f"Error instantiating agent: {e}")
58
- return f"Error initializing agent: {e}", None
59
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
60
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
61
- print(agent_code)
62
-
63
- # 2. Fetch Questions
64
- print(f"Fetching questions from: {questions_url}")
65
- try:
66
- response = requests.get(questions_url, timeout=15)
67
- response.raise_for_status()
68
- questions_data = response.json()
69
- if not questions_data:
70
- print("Fetched questions list is empty.")
71
- return "Fetched questions list is empty or invalid format.", None
72
- print(f"Fetched {len(questions_data)} questions.")
73
- except requests.exceptions.RequestException as e:
74
- print(f"Error fetching questions: {e}")
75
- return f"Error fetching questions: {e}", None
76
- except requests.exceptions.JSONDecodeError as e:
77
- print(f"Error decoding JSON response from questions endpoint: {e}")
78
- print(f"Response text: {response.text[:500]}")
79
- return f"Error decoding server response for questions: {e}", None
80
- except Exception as e:
81
- print(f"An unexpected error occurred fetching questions: {e}")
82
- return f"An unexpected error occurred fetching questions: {e}", None
83
-
84
- # 3. Run your Agent
85
- results_log = []
86
- answers_payload = []
87
- print(f"Running agent on {len(questions_data)} questions...")
88
- for item in questions_data:
89
- task_id = item.get("task_id")
90
- question_text = get_question(task_id)
91
-
92
- if not task_id or question_text is None:
93
- print(f"Skipping item with missing task_id or question: {item}")
94
- continue
95
- try:
96
-
97
- print("CURRENT QUESTION: ", task_id, question_text)
98
- submitted_answer = agent(question_text)
99
-
100
-
101
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
102
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
103
- except Exception as e:
104
- print(f"Error running agent on task {task_id}: {e}")
105
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
106
-
107
- if not answers_payload:
108
- print("Agent did not produce any answers to submit.")
109
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
110
-
111
- # 4. Prepare Submission
112
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
113
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
114
- print(status_update)
115
-
116
- # 5. Submit
117
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
118
- try:
119
- response = requests.post(submit_url, json=submission_data, timeout=60)
120
- response.raise_for_status()
121
- result_data = response.json()
122
- final_status = (
123
- f"Submission Successful!\n"
124
- f"User: {result_data.get('username')}\n"
125
- f"Overall Score: {result_data.get('score', 'N/A')}% "
126
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
127
- f"Message: {result_data.get('message', 'No message received.')}"
128
- )
129
- print("Submission successful.")
130
- results_df = pd.DataFrame(results_log)
131
- return final_status, results_df
132
- except requests.exceptions.HTTPError as e:
133
- error_detail = f"Server responded with status {e.response.status_code}."
134
- try:
135
- error_json = e.response.json()
136
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
137
- except requests.exceptions.JSONDecodeError:
138
- error_detail += f" Response: {e.response.text[:500]}"
139
- status_message = f"Submission Failed: {error_detail}"
140
- print(status_message)
141
- results_df = pd.DataFrame(results_log)
142
- return status_message, results_df
143
- except requests.exceptions.Timeout:
144
- status_message = "Submission Failed: The request timed out."
145
- print(status_message)
146
- results_df = pd.DataFrame(results_log)
147
- return status_message, results_df
148
- except requests.exceptions.RequestException as e:
149
- status_message = f"Submission Failed: Network error - {e}"
150
- print(status_message)
151
- results_df = pd.DataFrame(results_log)
152
- return status_message, results_df
153
- except Exception as e:
154
- status_message = f"An unexpected error occurred during submission: {e}"
155
- print(status_message)
156
- results_df = pd.DataFrame(results_log)
157
- return status_message, results_df
158
-
159
-
160
- # --- Build Gradio Interface using Blocks ---
161
- with gr.Blocks() as demo:
162
- gr.Markdown("# Basic Agent Evaluation Runner")
163
- gr.Markdown(
164
- """
165
- **Instructions:**
166
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
167
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
168
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
169
- ---
170
- **Disclaimers:**
171
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
172
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
173
- """
174
- )
175
-
176
- gr.LoginButton()
177
-
178
- run_button = gr.Button("Run Evaluation & Submit All Answers")
179
-
180
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
181
- # Removed max_rows=10 from DataFrame constructor
182
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
183
-
184
- run_button.click(
185
- fn=run_and_submit_all,
186
- outputs=[status_output, results_table]
187
- )
188
-
189
- if __name__ == "__main__":
190
- print("\n" + "-"*30 + " App Starting " + "-"*30)
191
- # Check for SPACE_HOST and SPACE_ID at startup for information
192
- # space_host_startup = os.getenv("SPACE_HOST")
193
- # space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
194
- space_host_startup = "artyomboyko-final-assignment-template.hf.space"
195
- space_id_startup = "artyomboyko/Final_Assignment_Template"
196
-
197
- if space_host_startup:
198
- print(f"✅ SPACE_HOST found: {space_host_startup}")
199
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
200
- else:
201
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
202
-
203
- if space_id_startup: # Print repo URLs if SPACE_ID is found
204
- print(f"✅ SPACE_ID found: {space_id_startup}")
205
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
206
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
207
- else:
208
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
209
-
210
- print("-"*(60 + len(" App Starting ")) + "\n")
211
-
212
- print("Launching Gradio Interface for Basic Agent Evaluation...")
213
  demo.launch(debug=True, share=False)
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ from huggingface_hub import login
8
+ from datasets import load_dataset
9
+ from dotenv import load_dotenv
10
+
11
+ from agent import instantiate_agent
12
+ from gaia_dataset import gaia_dataset, get_question
13
+
14
+ # (Сохраните константы как есть)
15
+ # --- Константы ---
16
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
17
+
18
+ class BasicAgent:
19
+
20
+ def __init__(self):
21
+ print("BasicAgent initialized.")
22
+ self.agent = instantiate_agent(agent_type="code")
23
+
24
+ print("Agent initialized successfully.")
25
+
26
+ def __call__(self, question: str) -> str:
27
+
28
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
29
+ fixed_answer = self.agent.run(question)
30
+ print(f"Agent returning fixed answer: {fixed_answer}")
31
+ return fixed_answer
32
+
33
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
34
+ """
35
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
36
+ and displays the results.
37
+ """
38
+ # --- Determine HF Space Runtime URL and Repo URL ---
39
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
40
+ # space_id = "artyomboyko/Final_Assignment_Template" # Local inference only!
41
+
42
+ if profile:
43
+ username= f"{profile.username}"
44
+ print(f"User logged in: {username}")
45
+ else:
46
+ print("User not logged in.")
47
+ return "Please Login to Hugging Face with the button.", None
48
+
49
+ api_url = DEFAULT_API_URL
50
+ questions_url = f"{api_url}/questions"
51
+ submit_url = f"{api_url}/submit"
52
+
53
+ # 1. Instantiate Agent ( modify this part to create your agent)
54
+ try:
55
+ agent = BasicAgent()
56
+ except Exception as e:
57
+ print(f"Error instantiating agent: {e}")
58
+ return f"Error initializing agent: {e}", None
59
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
60
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
61
+ print(agent_code)
62
+
63
+ # 2. Fetch Questions
64
+ print(f"Fetching questions from: {questions_url}")
65
+ try:
66
+ response = requests.get(questions_url, timeout=15)
67
+ response.raise_for_status()
68
+ questions_data = response.json()
69
+ if not questions_data:
70
+ print("Fetched questions list is empty.")
71
+ return "Fetched questions list is empty or invalid format.", None
72
+ print(f"Fetched {len(questions_data)} questions.")
73
+ except requests.exceptions.RequestException as e:
74
+ print(f"Error fetching questions: {e}")
75
+ return f"Error fetching questions: {e}", None
76
+ except requests.exceptions.JSONDecodeError as e:
77
+ print(f"Error decoding JSON response from questions endpoint: {e}")
78
+ print(f"Response text: {response.text[:500]}")
79
+ return f"Error decoding server response for questions: {e}", None
80
+ except Exception as e:
81
+ print(f"An unexpected error occurred fetching questions: {e}")
82
+ return f"An unexpected error occurred fetching questions: {e}", None
83
+
84
+ # 3. Run your Agent
85
+ results_log = []
86
+ answers_payload = []
87
+ print(f"Running agent on {len(questions_data)} questions...")
88
+ for item in questions_data:
89
+ task_id = item.get("task_id")
90
+ question_text = get_question(task_id)
91
+
92
+ if not task_id or question_text is None:
93
+ print(f"Skipping item with missing task_id or question: {item}")
94
+ continue
95
+ try:
96
+
97
+ print("CURRENT QUESTION: ", task_id, question_text)
98
+ submitted_answer = agent(question_text)
99
+
100
+
101
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
102
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
103
+ except Exception as e:
104
+ print(f"Error running agent on task {task_id}: {e}")
105
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
106
+
107
+ if not answers_payload:
108
+ print("Agent did not produce any answers to submit.")
109
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
110
+
111
+ # 4. Prepare Submission
112
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
113
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
114
+ print(status_update)
115
+
116
+ # 5. Submit
117
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
118
+ try:
119
+ response = requests.post(submit_url, json=submission_data, timeout=60)
120
+ response.raise_for_status()
121
+ result_data = response.json()
122
+ final_status = (
123
+ f"Submission Successful!\n"
124
+ f"User: {result_data.get('username')}\n"
125
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
126
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
127
+ f"Message: {result_data.get('message', 'No message received.')}"
128
+ )
129
+ print("Submission successful.")
130
+ results_df = pd.DataFrame(results_log)
131
+ return final_status, results_df
132
+ except requests.exceptions.HTTPError as e:
133
+ error_detail = f"Server responded with status {e.response.status_code}."
134
+ try:
135
+ error_json = e.response.json()
136
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
137
+ except requests.exceptions.JSONDecodeError:
138
+ error_detail += f" Response: {e.response.text[:500]}"
139
+ status_message = f"Submission Failed: {error_detail}"
140
+ print(status_message)
141
+ results_df = pd.DataFrame(results_log)
142
+ return status_message, results_df
143
+ except requests.exceptions.Timeout:
144
+ status_message = "Submission Failed: The request timed out."
145
+ print(status_message)
146
+ results_df = pd.DataFrame(results_log)
147
+ return status_message, results_df
148
+ except requests.exceptions.RequestException as e:
149
+ status_message = f"Submission Failed: Network error - {e}"
150
+ print(status_message)
151
+ results_df = pd.DataFrame(results_log)
152
+ return status_message, results_df
153
+ except Exception as e:
154
+ status_message = f"An unexpected error occurred during submission: {e}"
155
+ print(status_message)
156
+ results_df = pd.DataFrame(results_log)
157
+ return status_message, results_df
158
+
159
+
160
+ # --- Build Gradio Interface using Blocks ---
161
+ with gr.Blocks() as demo:
162
+ gr.Markdown("# Basic Agent Evaluation Runner")
163
+ gr.Markdown(
164
+ """
165
+ **Instructions:**
166
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
167
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
168
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
169
+ ---
170
+ **Disclaimers:**
171
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
172
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
173
+ """
174
+ )
175
+
176
+ gr.LoginButton()
177
+
178
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
179
+
180
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
181
+ # Removed max_rows=10 from DataFrame constructor
182
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
183
+
184
+ run_button.click(
185
+ fn=run_and_submit_all,
186
+ outputs=[status_output, results_table]
187
+ )
188
+
189
+ if __name__ == "__main__":
190
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
191
+ # Check for SPACE_HOST and SPACE_ID at startup for information
192
+ # space_host_startup = os.getenv("SPACE_HOST")
193
+ # space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
194
+ space_host_startup = "artyomboyko-final-assignment-template.hf.space"
195
+ space_id_startup = "artyomboyko/Final_Assignment_Template"
196
+
197
+ if space_host_startup:
198
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
199
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
200
+ else:
201
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
202
+
203
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
204
+ print(f"✅ SPACE_ID found: {space_id_startup}")
205
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
206
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
207
+ else:
208
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
209
+
210
+ print("-"*(60 + len(" App Starting ")) + "\n")
211
+
212
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
213
  demo.launch(debug=True, share=False)