File size: 9,094 Bytes
0236623
 
 
 
 
0d89d1c
0236623
 
 
 
0d89d1c
 
 
0236623
0d89d1c
 
 
 
0236623
0d89d1c
 
 
0236623
0d89d1c
 
0236623
0d89d1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0236623
 
 
 
 
0d89d1c
0236623
 
 
0d89d1c
 
0236623
 
 
 
 
 
 
 
0d89d1c
 
 
0236623
 
 
 
 
 
0d89d1c
0236623
 
 
 
 
0d89d1c
 
0236623
 
 
 
 
 
0d89d1c
 
0236623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d89d1c
 
 
0236623
0d89d1c
0236623
 
 
 
 
0d89d1c
 
0236623
 
 
 
 
 
 
 
 
 
 
 
 
0d89d1c
 
 
 
 
 
 
 
0236623
 
 
 
 
 
 
 
 
 
 
 
0d89d1c
 
 
 
0236623
 
 
 
 
0d89d1c
0236623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d89d1c
 
 
0236623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d89d1c
0236623
 
 
 
 
0d89d1c
0236623
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import plotly.graph_objects as go
import pandas as pd
import numpy as np

def calculate_runpod_cost_revised(
    requests_per_hour,
    execution_time_per_request,
    active_cost_per_second,
    flex_cost_per_second,
    cold_start_penalty,
    num_active_workers,
    concurrent_batch_size=1  # How many requests can be processed simultaneously by one worker
):
    # Monthly hours and requests
    monthly_hours = 24 * 30
    seconds_per_hour = 3600
    monthly_requests = requests_per_hour * monthly_hours
    
    # Calculate active worker capacity (requests per hour)
    # Each worker can process (concurrent_batch_size) requests at a time
    active_capacity_per_hour = (seconds_per_hour / execution_time_per_request) * num_active_workers * concurrent_batch_size
    
    # Total requests handled by active workers over the month
    active_requests_handled = min(monthly_requests, active_capacity_per_hour * monthly_hours)
    
    # Remaining requests go to flex workers
    flex_requests = max(0, monthly_requests - active_requests_handled)
    
    # Active worker cost (constant regardless of actual usage)
    active_cost = num_active_workers * active_cost_per_second * seconds_per_hour * monthly_hours
    
    # For flex workers, we calculate cold starts based on request arrival pattern
    # This is simplified - in reality depends on actual traffic patterns
    avg_requests_per_cold_start = concurrent_batch_size * 2  # Estimate that batches arrive close enough to reuse some workers
    cold_starts = flex_requests / avg_requests_per_cold_start if flex_requests > 0 else 0
    
    # Flex worker cost (only pay for processing time + cold starts)
    flex_processing_cost = flex_requests * execution_time_per_request * flex_cost_per_second
    flex_cold_start_cost = cold_starts * cold_start_penalty * flex_cost_per_second
    flex_cost = flex_processing_cost + flex_cold_start_cost
    
    # Active worker utilization
    active_utilization = (active_requests_handled / (active_capacity_per_hour * monthly_hours) * 100) if num_active_workers > 0 else 0
    
    total_monthly_cost = active_cost + flex_cost
    
    return {
        "monthly_requests": monthly_requests,
        "active_requests": active_requests_handled,
        "flex_requests": flex_requests,
        "active_cost": active_cost,
        "flex_cost": flex_cost,
        "total_monthly_cost": total_monthly_cost,
        "active_utilization": active_utilization
    }

def generate_cost_projection(
    min_requests,
    max_requests,
    execution_time,
    active_cost,
    flex_cost,
    num_active_workers,
    cold_start,
    concurrent_batch_size
):
    # Generate data for different request volumes
    request_volumes = np.linspace(min_requests, max_requests, 20)
    results = []

    for req_vol in request_volumes:
        result = calculate_runpod_cost_revised(
            req_vol, 
            execution_time, 
            active_cost, 
            flex_cost, 
            cold_start, 
            num_active_workers,
            concurrent_batch_size
        )
        results.append({
            'requests_per_hour': req_vol,
            'monthly_requests': result['monthly_requests'],
            'active_cost': result['active_cost'],
            'flex_cost': result['flex_cost'],
            'total_cost': result['total_monthly_cost'],
            'active_utilization': result['active_utilization']
        })

    df = pd.DataFrame(results)

    # Create plotly figure
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=df['requests_per_hour'],
        y=df['active_cost'],
        name='Active Worker Cost',
        line=dict(color='blue')
    ))
    fig.add_trace(go.Scatter(
        x=df['requests_per_hour'],
        y=df['flex_cost'],
        name='Flex Worker Cost',
        line=dict(color='orange')
    ))
    fig.add_trace(go.Scatter(
        x=df['requests_per_hour'],
        y=df['total_cost'],
        name='Total Cost',
        line=dict(color='green', width=3)
    ))

    fig.update_layout(
        title='RunPod Serverless Monthly Cost Projection',
        xaxis_title='Requests per Hour',
        yaxis_title='Monthly Cost ($)',
        hovermode='x unified'
    )
    
    return fig

def calculate_specific_cost(
    requests,
    execution_time,
    active_cost,
    flex_cost,
    num_active_workers,
    cold_start,
    concurrent_batch_size
):
    result = calculate_runpod_cost_revised(
        requests, 
        execution_time, 
        active_cost, 
        flex_cost, 
        cold_start, 
        num_active_workers,
        concurrent_batch_size
    )
    
    # Format the output HTML for the table
    html = f"""
    <table style="width:100%; border-collapse: collapse;">
      <tr style="background-color: #f2f2f2;">
        <th style="padding: 12px; text-align: left; border: 1px solid #ddd;">Metric</th>
        <th style="padding: 12px; text-align: right; border: 1px solid #ddd;">Value</th>
      </tr>
      <tr>
        <td style="padding: 8px; border: 1px solid #ddd;">Monthly Requests</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['monthly_requests']:,.0f}</td>
      </tr>
      <tr>
        <td style="padding: 8px; border: 1px solid #ddd;">Requests Handled by Active Workers</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['active_requests']:,.0f}</td>
      </tr>
      <tr>
        <td style="padding: 8px; border: 1px solid #ddd;">Requests Handled by Flex Workers</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['flex_requests']:,.0f}</td>
      </tr>
      <tr>
        <td style="padding: 8px; border: 1px solid #ddd;">Active Worker Cost</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">${result['active_cost']:,.2f}</td>
      </tr>
      <tr>
        <td style="padding: 8px; border: 1px solid #ddd;">Flex Worker Cost</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">${result['flex_cost']:,.2f}</td>
      </tr>
      <tr style="font-weight: bold;">
        <td style="padding: 8px; border: 1px solid #ddd;">Total Monthly Cost</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">${result['total_monthly_cost']:,.2f}</td>
      </tr>
      <tr>
        <td style="padding: 8px; border: 1px solid #ddd;">Active Worker Utilization</td>
        <td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['active_utilization']:.1f}%</td>
      </tr>
    </table>
    """
    
    return html

# Create theme
theme = gr.themes.Default(
    primary_hue=gr.themes.colors.red,
    secondary_hue=gr.themes.colors.red,
    neutral_hue=gr.themes.colors.slate,
)

# Create Gradio interface
with gr.Blocks(title="RunPod Serverless Cost Estimator", theme=theme) as demo:
    gr.Markdown("# RunPod Serverless Cost Estimator")
    gr.Markdown("Estimate your monthly RunPod Serverless costs based on request volume and execution time")
    
    with gr.Row():
        with gr.Column(scale=1):
            min_requests = gr.Slider(minimum=100, maximum=50000, value=1000, step=1000, label="Minimum Requests/Hour")
            max_requests = gr.Slider(minimum=1000, maximum=100000, value=20000, step=1000, label="Maximum Requests/Hour")
            execution_time = gr.Slider(minimum=1, maximum=120, value=30, step=1, label="Execution Time per Request (seconds)")
            active_cost = gr.Number(value=0.00019, label="Active Worker Cost ($/second)", precision=5)
            flex_cost = gr.Number(value=0.00031, label="Flex Worker Cost ($/second)", precision=5)
            num_active_workers = gr.Slider(minimum=0, maximum=600, value=30, step=10, label="Number of Active Workers")
            cold_start = gr.Slider(minimum=0, maximum=60, value=1, step=1, label="Cold Start Penalty (seconds)")
            concurrent_batch_size = gr.Slider(minimum=1, maximum=10, value=2, step=1, label="Concurrent Requests per Worker")
            
            plot_button = gr.Button("Generate Cost Projection")
        
        with gr.Column(scale=2):
            plot_output = gr.Plot(label="Cost Projection")
    
    gr.Markdown("## Cost Breakdown for Specific Request Volume")
    
    with gr.Row():
        with gr.Column(scale=1):
            specific_requests = gr.Number(value=10000, label="Requests per Hour", precision=0)
            calc_button = gr.Button("Calculate Cost")
        
        with gr.Column(scale=2):
            cost_table = gr.HTML()
    
    plot_button.click(
        generate_cost_projection,
        inputs=[min_requests, max_requests, execution_time, active_cost, flex_cost, num_active_workers, cold_start, concurrent_batch_size],
        outputs=plot_output
    )
    
    calc_button.click(
        calculate_specific_cost,
        inputs=[specific_requests, execution_time, active_cost, flex_cost, num_active_workers, cold_start, concurrent_batch_size],
        outputs=cost_table
    )

# Launch the app
if __name__ == "__main__":
    demo.launch()