File size: 9,094 Bytes
0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 0d89d1c 0236623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
import plotly.graph_objects as go
import pandas as pd
import numpy as np
def calculate_runpod_cost_revised(
requests_per_hour,
execution_time_per_request,
active_cost_per_second,
flex_cost_per_second,
cold_start_penalty,
num_active_workers,
concurrent_batch_size=1 # How many requests can be processed simultaneously by one worker
):
# Monthly hours and requests
monthly_hours = 24 * 30
seconds_per_hour = 3600
monthly_requests = requests_per_hour * monthly_hours
# Calculate active worker capacity (requests per hour)
# Each worker can process (concurrent_batch_size) requests at a time
active_capacity_per_hour = (seconds_per_hour / execution_time_per_request) * num_active_workers * concurrent_batch_size
# Total requests handled by active workers over the month
active_requests_handled = min(monthly_requests, active_capacity_per_hour * monthly_hours)
# Remaining requests go to flex workers
flex_requests = max(0, monthly_requests - active_requests_handled)
# Active worker cost (constant regardless of actual usage)
active_cost = num_active_workers * active_cost_per_second * seconds_per_hour * monthly_hours
# For flex workers, we calculate cold starts based on request arrival pattern
# This is simplified - in reality depends on actual traffic patterns
avg_requests_per_cold_start = concurrent_batch_size * 2 # Estimate that batches arrive close enough to reuse some workers
cold_starts = flex_requests / avg_requests_per_cold_start if flex_requests > 0 else 0
# Flex worker cost (only pay for processing time + cold starts)
flex_processing_cost = flex_requests * execution_time_per_request * flex_cost_per_second
flex_cold_start_cost = cold_starts * cold_start_penalty * flex_cost_per_second
flex_cost = flex_processing_cost + flex_cold_start_cost
# Active worker utilization
active_utilization = (active_requests_handled / (active_capacity_per_hour * monthly_hours) * 100) if num_active_workers > 0 else 0
total_monthly_cost = active_cost + flex_cost
return {
"monthly_requests": monthly_requests,
"active_requests": active_requests_handled,
"flex_requests": flex_requests,
"active_cost": active_cost,
"flex_cost": flex_cost,
"total_monthly_cost": total_monthly_cost,
"active_utilization": active_utilization
}
def generate_cost_projection(
min_requests,
max_requests,
execution_time,
active_cost,
flex_cost,
num_active_workers,
cold_start,
concurrent_batch_size
):
# Generate data for different request volumes
request_volumes = np.linspace(min_requests, max_requests, 20)
results = []
for req_vol in request_volumes:
result = calculate_runpod_cost_revised(
req_vol,
execution_time,
active_cost,
flex_cost,
cold_start,
num_active_workers,
concurrent_batch_size
)
results.append({
'requests_per_hour': req_vol,
'monthly_requests': result['monthly_requests'],
'active_cost': result['active_cost'],
'flex_cost': result['flex_cost'],
'total_cost': result['total_monthly_cost'],
'active_utilization': result['active_utilization']
})
df = pd.DataFrame(results)
# Create plotly figure
fig = go.Figure()
fig.add_trace(go.Scatter(
x=df['requests_per_hour'],
y=df['active_cost'],
name='Active Worker Cost',
line=dict(color='blue')
))
fig.add_trace(go.Scatter(
x=df['requests_per_hour'],
y=df['flex_cost'],
name='Flex Worker Cost',
line=dict(color='orange')
))
fig.add_trace(go.Scatter(
x=df['requests_per_hour'],
y=df['total_cost'],
name='Total Cost',
line=dict(color='green', width=3)
))
fig.update_layout(
title='RunPod Serverless Monthly Cost Projection',
xaxis_title='Requests per Hour',
yaxis_title='Monthly Cost ($)',
hovermode='x unified'
)
return fig
def calculate_specific_cost(
requests,
execution_time,
active_cost,
flex_cost,
num_active_workers,
cold_start,
concurrent_batch_size
):
result = calculate_runpod_cost_revised(
requests,
execution_time,
active_cost,
flex_cost,
cold_start,
num_active_workers,
concurrent_batch_size
)
# Format the output HTML for the table
html = f"""
<table style="width:100%; border-collapse: collapse;">
<tr style="background-color: #f2f2f2;">
<th style="padding: 12px; text-align: left; border: 1px solid #ddd;">Metric</th>
<th style="padding: 12px; text-align: right; border: 1px solid #ddd;">Value</th>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">Monthly Requests</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['monthly_requests']:,.0f}</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">Requests Handled by Active Workers</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['active_requests']:,.0f}</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">Requests Handled by Flex Workers</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['flex_requests']:,.0f}</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">Active Worker Cost</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">${result['active_cost']:,.2f}</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">Flex Worker Cost</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">${result['flex_cost']:,.2f}</td>
</tr>
<tr style="font-weight: bold;">
<td style="padding: 8px; border: 1px solid #ddd;">Total Monthly Cost</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">${result['total_monthly_cost']:,.2f}</td>
</tr>
<tr>
<td style="padding: 8px; border: 1px solid #ddd;">Active Worker Utilization</td>
<td style="padding: 8px; text-align: right; border: 1px solid #ddd;">{result['active_utilization']:.1f}%</td>
</tr>
</table>
"""
return html
# Create theme
theme = gr.themes.Default(
primary_hue=gr.themes.colors.red,
secondary_hue=gr.themes.colors.red,
neutral_hue=gr.themes.colors.slate,
)
# Create Gradio interface
with gr.Blocks(title="RunPod Serverless Cost Estimator", theme=theme) as demo:
gr.Markdown("# RunPod Serverless Cost Estimator")
gr.Markdown("Estimate your monthly RunPod Serverless costs based on request volume and execution time")
with gr.Row():
with gr.Column(scale=1):
min_requests = gr.Slider(minimum=100, maximum=50000, value=1000, step=1000, label="Minimum Requests/Hour")
max_requests = gr.Slider(minimum=1000, maximum=100000, value=20000, step=1000, label="Maximum Requests/Hour")
execution_time = gr.Slider(minimum=1, maximum=120, value=30, step=1, label="Execution Time per Request (seconds)")
active_cost = gr.Number(value=0.00019, label="Active Worker Cost ($/second)", precision=5)
flex_cost = gr.Number(value=0.00031, label="Flex Worker Cost ($/second)", precision=5)
num_active_workers = gr.Slider(minimum=0, maximum=600, value=30, step=10, label="Number of Active Workers")
cold_start = gr.Slider(minimum=0, maximum=60, value=1, step=1, label="Cold Start Penalty (seconds)")
concurrent_batch_size = gr.Slider(minimum=1, maximum=10, value=2, step=1, label="Concurrent Requests per Worker")
plot_button = gr.Button("Generate Cost Projection")
with gr.Column(scale=2):
plot_output = gr.Plot(label="Cost Projection")
gr.Markdown("## Cost Breakdown for Specific Request Volume")
with gr.Row():
with gr.Column(scale=1):
specific_requests = gr.Number(value=10000, label="Requests per Hour", precision=0)
calc_button = gr.Button("Calculate Cost")
with gr.Column(scale=2):
cost_table = gr.HTML()
plot_button.click(
generate_cost_projection,
inputs=[min_requests, max_requests, execution_time, active_cost, flex_cost, num_active_workers, cold_start, concurrent_batch_size],
outputs=plot_output
)
calc_button.click(
calculate_specific_cost,
inputs=[specific_requests, execution_time, active_cost, flex_cost, num_active_workers, cold_start, concurrent_batch_size],
outputs=cost_table
)
# Launch the app
if __name__ == "__main__":
demo.launch() |