Spaces:
Running
Running
File size: 5,203 Bytes
ba2f5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
"""
Magic functions for rendering vega/vega-lite specifications
"""
__all__ = ["vega", "vegalite"]
import json
import warnings
import IPython
from IPython.core import magic_arguments
import pandas as pd
from toolz import curried
from altair.vegalite import v3 as vegalite_v3
from altair.vegalite import v4 as vegalite_v4
from altair.vega import v5 as vega_v5
try:
import yaml
YAML_AVAILABLE = True
except ImportError:
YAML_AVAILABLE = False
RENDERERS = {
"vega": {"5": vega_v5.Vega},
"vega-lite": {"3": vegalite_v3.VegaLite, "4": vegalite_v4.VegaLite},
}
TRANSFORMERS = {
"vega": {
# Vega doesn't yet have specific data transformers; use vegalite
"5": vegalite_v4.data_transformers,
},
"vega-lite": {
"3": vegalite_v3.data_transformers,
"4": vegalite_v4.data_transformers,
},
}
def _prepare_data(data, data_transformers):
"""Convert input data to data for use within schema"""
if data is None or isinstance(data, dict):
return data
elif isinstance(data, pd.DataFrame):
return curried.pipe(data, data_transformers.get())
elif isinstance(data, str):
return {"url": data}
else:
warnings.warn("data of type {} not recognized".format(type(data)))
return data
def _get_variable(name):
"""Get a variable from the notebook namespace."""
ip = IPython.get_ipython()
if ip is None:
raise ValueError(
"Magic command must be run within an IPython "
"environemnt, in which get_ipython() is defined."
)
if name not in ip.user_ns:
raise NameError(
"argument '{}' does not match the "
"name of any defined variable".format(name)
)
return ip.user_ns[name]
@magic_arguments.magic_arguments()
@magic_arguments.argument(
"data",
nargs="*",
help="local variable name of a pandas DataFrame to be used as the dataset",
)
@magic_arguments.argument("-v", "--version", dest="version", default="5")
@magic_arguments.argument("-j", "--json", dest="json", action="store_true")
def vega(line, cell):
"""Cell magic for displaying Vega visualizations in CoLab.
%%vega [name1:variable1 name2:variable2 ...] [--json] [--version='5']
Visualize the contents of the cell using Vega, optionally specifying
one or more pandas DataFrame objects to be used as the datasets.
If --json is passed, then input is parsed as json rather than yaml.
"""
args = magic_arguments.parse_argstring(vega, line)
version = args.version
assert version in RENDERERS["vega"]
Vega = RENDERERS["vega"][version]
data_transformers = TRANSFORMERS["vega"][version]
def namevar(s):
s = s.split(":")
if len(s) == 1:
return s[0], s[0]
elif len(s) == 2:
return s[0], s[1]
else:
raise ValueError("invalid identifier: '{}'".format(s))
try:
data = list(map(namevar, args.data))
except ValueError:
raise ValueError("Could not parse arguments: '{}'".format(line))
if args.json:
spec = json.loads(cell)
elif not YAML_AVAILABLE:
try:
spec = json.loads(cell)
except json.JSONDecodeError:
raise ValueError(
"%%vega: spec is not valid JSON. "
"Install pyyaml to parse spec as yaml"
)
else:
spec = yaml.load(cell, Loader=yaml.FullLoader)
if data:
spec["data"] = []
for name, val in data:
val = _get_variable(val)
prepped = _prepare_data(val, data_transformers)
prepped["name"] = name
spec["data"].append(prepped)
return Vega(spec)
@magic_arguments.magic_arguments()
@magic_arguments.argument(
"data",
nargs="?",
help="local variablename of a pandas DataFrame to be used as the dataset",
)
@magic_arguments.argument("-v", "--version", dest="version", default="4")
@magic_arguments.argument("-j", "--json", dest="json", action="store_true")
def vegalite(line, cell):
"""Cell magic for displaying vega-lite visualizations in CoLab.
%%vegalite [dataframe] [--json] [--version=3]
Visualize the contents of the cell using Vega-Lite, optionally
specifying a pandas DataFrame object to be used as the dataset.
if --json is passed, then input is parsed as json rather than yaml.
"""
args = magic_arguments.parse_argstring(vegalite, line)
version = args.version
assert version in RENDERERS["vega-lite"]
VegaLite = RENDERERS["vega-lite"][version]
data_transformers = TRANSFORMERS["vega-lite"][version]
if args.json:
spec = json.loads(cell)
elif not YAML_AVAILABLE:
try:
spec = json.loads(cell)
except json.JSONDecodeError:
raise ValueError(
"%%vegalite: spec is not valid JSON. "
"Install pyyaml to parse spec as yaml"
)
else:
spec = yaml.load(cell, Loader=yaml.FullLoader)
if args.data is not None:
data = _get_variable(args.data)
spec["data"] = _prepare_data(data, data_transformers)
return VegaLite(spec)
|