File size: 29,937 Bytes
ba2f5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
"""Unit tests for altair API"""

import io
import json
import operator
import os
import tempfile

import jsonschema
import pytest
import pandas as pd

import altair.vegalite.v3 as alt
from altair.utils import AltairDeprecationWarning

try:
    import altair_saver  # noqa: F401
except ImportError:
    altair_saver = None


def getargs(*args, **kwargs):
    return args, kwargs


OP_DICT = {
    "layer": operator.add,
    "hconcat": operator.or_,
    "vconcat": operator.and_,
}


def _make_chart_type(chart_type):
    data = pd.DataFrame(
        {
            "x": [28, 55, 43, 91, 81, 53, 19, 87],
            "y": [43, 91, 81, 53, 19, 87, 52, 28],
            "color": list("AAAABBBB"),
        }
    )
    base = (
        alt.Chart(data)
        .mark_point()
        .encode(
            x="x",
            y="y",
            color="color",
        )
    )

    if chart_type in ["layer", "hconcat", "vconcat", "concat"]:
        func = getattr(alt, chart_type)
        return func(base.mark_square(), base.mark_circle())
    elif chart_type == "facet":
        return base.facet("color")
    elif chart_type == "facet_encoding":
        return base.encode(facet="color")
    elif chart_type == "repeat":
        return base.encode(alt.X(alt.repeat(), type="quantitative")).repeat(["x", "y"])
    elif chart_type == "chart":
        return base
    else:
        raise ValueError("chart_type='{}' is not recognized".format(chart_type))


@pytest.fixture
def basic_chart():
    data = pd.DataFrame(
        {
            "a": ["A", "B", "C", "D", "E", "F", "G", "H", "I"],
            "b": [28, 55, 43, 91, 81, 53, 19, 87, 52],
        }
    )

    return alt.Chart(data).mark_bar().encode(x="a", y="b")


def test_chart_data_types():
    def Chart(data):
        return alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")

    # Url Data
    data = "/path/to/my/data.csv"
    dct = Chart(data).to_dict()
    assert dct["data"] == {"url": data}

    # Dict Data
    data = {"values": [{"x": 1, "y": 2}, {"x": 2, "y": 3}]}
    with alt.data_transformers.enable(consolidate_datasets=False):
        dct = Chart(data).to_dict()
    assert dct["data"] == data

    with alt.data_transformers.enable(consolidate_datasets=True):
        dct = Chart(data).to_dict()
    name = dct["data"]["name"]
    assert dct["datasets"][name] == data["values"]

    # DataFrame data
    data = pd.DataFrame({"x": range(5), "y": range(5)})
    with alt.data_transformers.enable(consolidate_datasets=False):
        dct = Chart(data).to_dict()
    assert dct["data"]["values"] == data.to_dict(orient="records")

    with alt.data_transformers.enable(consolidate_datasets=True):
        dct = Chart(data).to_dict()
    name = dct["data"]["name"]
    assert dct["datasets"][name] == data.to_dict(orient="records")

    # Named data object
    data = alt.NamedData(name="Foo")
    dct = Chart(data).to_dict()
    assert dct["data"] == {"name": "Foo"}


def test_chart_infer_types():
    data = pd.DataFrame(
        {
            "x": pd.date_range("2012", periods=10, freq="Y"),
            "y": range(10),
            "c": list("abcabcabca"),
        }
    )

    def _check_encodings(chart):
        dct = chart.to_dict()
        assert dct["encoding"]["x"]["type"] == "temporal"
        assert dct["encoding"]["x"]["field"] == "x"
        assert dct["encoding"]["y"]["type"] == "quantitative"
        assert dct["encoding"]["y"]["field"] == "y"
        assert dct["encoding"]["color"]["type"] == "nominal"
        assert dct["encoding"]["color"]["field"] == "c"

    # Pass field names by keyword
    chart = alt.Chart(data).mark_point().encode(x="x", y="y", color="c")
    _check_encodings(chart)

    # pass Channel objects by keyword
    chart = (
        alt.Chart(data)
        .mark_point()
        .encode(x=alt.X("x"), y=alt.Y("y"), color=alt.Color("c"))
    )
    _check_encodings(chart)

    # pass Channel objects by value
    chart = alt.Chart(data).mark_point().encode(alt.X("x"), alt.Y("y"), alt.Color("c"))
    _check_encodings(chart)

    # override default types
    chart = (
        alt.Chart(data)
        .mark_point()
        .encode(alt.X("x", type="nominal"), alt.Y("y", type="ordinal"))
    )
    dct = chart.to_dict()
    assert dct["encoding"]["x"]["type"] == "nominal"
    assert dct["encoding"]["y"]["type"] == "ordinal"


@pytest.mark.parametrize(
    "args, kwargs",
    [
        getargs(detail=["value:Q", "name:N"], tooltip=["value:Q", "name:N"]),
        getargs(detail=["value", "name"], tooltip=["value", "name"]),
        getargs(alt.Detail(["value:Q", "name:N"]), alt.Tooltip(["value:Q", "name:N"])),
        getargs(alt.Detail(["value", "name"]), alt.Tooltip(["value", "name"])),
        getargs(
            [alt.Detail("value:Q"), alt.Detail("name:N")],
            [alt.Tooltip("value:Q"), alt.Tooltip("name:N")],
        ),
        getargs(
            [alt.Detail("value"), alt.Detail("name")],
            [alt.Tooltip("value"), alt.Tooltip("name")],
        ),
    ],
)
def test_multiple_encodings(args, kwargs):
    df = pd.DataFrame({"value": [1, 2, 3], "name": ["A", "B", "C"]})
    encoding_dct = [
        {"field": "value", "type": "quantitative"},
        {"field": "name", "type": "nominal"},
    ]
    chart = alt.Chart(df).mark_point().encode(*args, **kwargs)
    dct = chart.to_dict()
    assert dct["encoding"]["detail"] == encoding_dct
    assert dct["encoding"]["tooltip"] == encoding_dct


def test_chart_operations():
    data = pd.DataFrame(
        {
            "x": pd.date_range("2012", periods=10, freq="Y"),
            "y": range(10),
            "c": list("abcabcabca"),
        }
    )
    chart1 = alt.Chart(data).mark_line().encode(x="x", y="y", color="c")
    chart2 = chart1.mark_point()
    chart3 = chart1.mark_circle()
    chart4 = chart1.mark_square()

    chart = chart1 + chart2 + chart3
    assert isinstance(chart, alt.LayerChart)
    assert len(chart.layer) == 3
    chart += chart4
    assert len(chart.layer) == 4

    chart = chart1 | chart2 | chart3
    assert isinstance(chart, alt.HConcatChart)
    assert len(chart.hconcat) == 3
    chart |= chart4
    assert len(chart.hconcat) == 4

    chart = chart1 & chart2 & chart3
    assert isinstance(chart, alt.VConcatChart)
    assert len(chart.vconcat) == 3
    chart &= chart4
    assert len(chart.vconcat) == 4


def test_selection_to_dict():
    brush = alt.selection(type="interval")

    # test some value selections
    # Note: X and Y cannot have conditions
    alt.Chart("path/to/data.json").mark_point().encode(
        color=alt.condition(brush, alt.ColorValue("red"), alt.ColorValue("blue")),
        opacity=alt.condition(brush, alt.value(0.5), alt.value(1.0)),
        text=alt.condition(brush, alt.TextValue("foo"), alt.value("bar")),
    ).to_dict()

    # test some field selections
    # Note: X and Y cannot have conditions
    # Conditions cannot both be fields
    alt.Chart("path/to/data.json").mark_point().encode(
        color=alt.condition(brush, alt.Color("col1:N"), alt.value("blue")),
        opacity=alt.condition(brush, "col1:N", alt.value(0.5)),
        text=alt.condition(brush, alt.value("abc"), alt.Text("col2:N")),
        size=alt.condition(brush, alt.value(20), "col2:N"),
    ).to_dict()


def test_selection_expression():
    selection = alt.selection_single(fields=["value"])

    assert isinstance(selection.value, alt.expr.Expression)
    assert selection.value.to_dict() == "{0}.value".format(selection.name)

    assert isinstance(selection["value"], alt.expr.Expression)
    assert selection["value"].to_dict() == "{0}['value']".format(selection.name)

    with pytest.raises(AttributeError):
        selection.__magic__


@pytest.mark.parametrize("format", ["html", "json", "png", "svg", "pdf"])
def test_save(format, basic_chart):
    if format in ["pdf", "png"]:
        out = io.BytesIO()
        mode = "rb"
    else:
        out = io.StringIO()
        mode = "r"

    if format in ["svg", "png", "pdf"]:
        if not altair_saver:
            with pytest.raises(ValueError) as err:
                basic_chart.save(out, format=format)
            assert "github.com/altair-viz/altair_saver" in str(err.value)
            return
        elif format not in altair_saver.available_formats():
            with pytest.raises(ValueError) as err:
                basic_chart.save(out, format=format)
            assert f"No enabled saver found that supports format='{format}'" in str(
                err.value
            )
            return

    basic_chart.save(out, format=format)
    out.seek(0)
    content = out.read()

    if format == "json":
        assert "$schema" in json.loads(content)
    if format == "html":
        assert content.startswith("<!DOCTYPE html>")

    fid, filename = tempfile.mkstemp(suffix="." + format)
    os.close(fid)

    try:
        basic_chart.save(filename)
        with open(filename, mode) as f:
            assert f.read()[:1000] == content[:1000]
    finally:
        os.remove(filename)


def test_facet_basic():
    # wrapped facet
    chart1 = (
        alt.Chart("data.csv")
        .mark_point()
        .encode(
            x="x:Q",
            y="y:Q",
        )
        .facet("category:N", columns=2)
    )

    dct1 = chart1.to_dict()

    assert dct1["facet"] == alt.Facet("category:N").to_dict()
    assert dct1["columns"] == 2
    assert dct1["data"] == alt.UrlData("data.csv").to_dict()

    # explicit row/col facet
    chart2 = (
        alt.Chart("data.csv")
        .mark_point()
        .encode(
            x="x:Q",
            y="y:Q",
        )
        .facet(row="category1:Q", column="category2:Q")
    )

    dct2 = chart2.to_dict()

    assert dct2["facet"]["row"] == alt.Facet("category1:Q").to_dict()
    assert dct2["facet"]["column"] == alt.Facet("category2:Q").to_dict()
    assert "columns" not in dct2
    assert dct2["data"] == alt.UrlData("data.csv").to_dict()


def test_facet_parse():
    chart = (
        alt.Chart("data.csv")
        .mark_point()
        .encode(x="x:Q", y="y:Q")
        .facet(row="row:N", column="column:O")
    )
    dct = chart.to_dict()
    assert dct["data"] == {"url": "data.csv"}
    assert "data" not in dct["spec"]
    assert dct["facet"] == {
        "column": {"field": "column", "type": "ordinal"},
        "row": {"field": "row", "type": "nominal"},
    }


def test_facet_parse_data():
    data = pd.DataFrame({"x": range(5), "y": range(5), "row": list("abcab")})
    chart = (
        alt.Chart(data)
        .mark_point()
        .encode(x="x", y="y:O")
        .facet(row="row", column="column:O")
    )
    with alt.data_transformers.enable(consolidate_datasets=False):
        dct = chart.to_dict()
    assert "values" in dct["data"]
    assert "data" not in dct["spec"]
    assert dct["facet"] == {
        "column": {"field": "column", "type": "ordinal"},
        "row": {"field": "row", "type": "nominal"},
    }

    with alt.data_transformers.enable(consolidate_datasets=True):
        dct = chart.to_dict()
    assert "datasets" in dct
    assert "name" in dct["data"]
    assert "data" not in dct["spec"]
    assert dct["facet"] == {
        "column": {"field": "column", "type": "ordinal"},
        "row": {"field": "row", "type": "nominal"},
    }


def test_selection():
    # test instantiation of selections
    interval = alt.selection_interval(name="selec_1")
    assert interval.selection.type == "interval"
    assert interval.name == "selec_1"

    single = alt.selection_single(name="selec_2")
    assert single.selection.type == "single"
    assert single.name == "selec_2"

    multi = alt.selection_multi(name="selec_3")
    assert multi.selection.type == "multi"
    assert multi.name == "selec_3"

    # test adding to chart
    chart = alt.Chart().add_selection(single)
    chart = chart.add_selection(multi, interval)
    assert set(chart.selection.keys()) == {"selec_1", "selec_2", "selec_3"}

    # test logical operations
    assert isinstance(single & multi, alt.Selection)
    assert isinstance(single | multi, alt.Selection)
    assert isinstance(~single, alt.Selection)
    assert isinstance((single & multi)[0].group, alt.SelectionAnd)
    assert isinstance((single | multi)[0].group, alt.SelectionOr)
    assert isinstance((~single)[0].group, alt.SelectionNot)

    # test that default names increment (regression for #1454)
    sel1 = alt.selection_single()
    sel2 = alt.selection_multi()
    sel3 = alt.selection_interval()
    names = {s.name for s in (sel1, sel2, sel3)}
    assert len(names) == 3


def test_transforms():
    # aggregate transform
    agg1 = alt.AggregatedFieldDef(**{"as": "x1", "op": "mean", "field": "y"})
    agg2 = alt.AggregatedFieldDef(**{"as": "x2", "op": "median", "field": "z"})
    chart = alt.Chart().transform_aggregate([agg1], ["foo"], x2="median(z)")
    kwds = dict(aggregate=[agg1, agg2], groupby=["foo"])
    assert chart.transform == [alt.AggregateTransform(**kwds)]

    # bin transform
    chart = alt.Chart().transform_bin("binned", field="field", bin=True)
    kwds = {"as": "binned", "field": "field", "bin": True}
    assert chart.transform == [alt.BinTransform(**kwds)]

    # calcualte transform
    chart = alt.Chart().transform_calculate("calc", "datum.a * 4")
    kwds = {"as": "calc", "calculate": "datum.a * 4"}
    assert chart.transform == [alt.CalculateTransform(**kwds)]

    # impute transform
    chart = alt.Chart().transform_impute("field", "key", groupby=["x"])
    kwds = {"impute": "field", "key": "key", "groupby": ["x"]}
    assert chart.transform == [alt.ImputeTransform(**kwds)]

    # joinaggregate transform
    chart = alt.Chart().transform_joinaggregate(min="min(x)", groupby=["key"])
    kwds = {
        "joinaggregate": [
            alt.JoinAggregateFieldDef(field="x", op="min", **{"as": "min"})
        ],
        "groupby": ["key"],
    }
    assert chart.transform == [alt.JoinAggregateTransform(**kwds)]

    # filter transform
    chart = alt.Chart().transform_filter("datum.a < 4")
    assert chart.transform == [alt.FilterTransform(filter="datum.a < 4")]

    # flatten transform
    chart = alt.Chart().transform_flatten(["A", "B"], ["X", "Y"])
    kwds = {"as": ["X", "Y"], "flatten": ["A", "B"]}
    assert chart.transform == [alt.FlattenTransform(**kwds)]

    # fold transform
    chart = alt.Chart().transform_fold(["A", "B", "C"], as_=["key", "val"])
    kwds = {"as": ["key", "val"], "fold": ["A", "B", "C"]}
    assert chart.transform == [alt.FoldTransform(**kwds)]

    # lookup transform
    lookup_data = alt.LookupData(alt.UrlData("foo.csv"), "id", ["rate"])
    chart = alt.Chart().transform_lookup(
        from_=lookup_data, as_="a", lookup="a", default="b"
    )
    kwds = {"from": lookup_data, "as": "a", "lookup": "a", "default": "b"}
    assert chart.transform == [alt.LookupTransform(**kwds)]

    # sample transform
    chart = alt.Chart().transform_sample()
    assert chart.transform == [alt.SampleTransform(1000)]

    # stack transform
    chart = alt.Chart().transform_stack("stacked", "x", groupby=["y"])
    assert chart.transform == [
        alt.StackTransform(stack="x", groupby=["y"], **{"as": "stacked"})
    ]

    # timeUnit transform
    chart = alt.Chart().transform_timeunit("foo", field="x", timeUnit="date")
    kwds = {"as": "foo", "field": "x", "timeUnit": "date"}
    assert chart.transform == [alt.TimeUnitTransform(**kwds)]

    # window transform
    chart = alt.Chart().transform_window(xsum="sum(x)", ymin="min(y)", frame=[None, 0])
    window = [
        alt.WindowFieldDef(**{"as": "xsum", "field": "x", "op": "sum"}),
        alt.WindowFieldDef(**{"as": "ymin", "field": "y", "op": "min"}),
    ]

    # kwargs don't maintain order in Python < 3.6, so window list can
    # be reversed
    assert chart.transform == [
        alt.WindowTransform(frame=[None, 0], window=window)
    ] or chart.transform == [alt.WindowTransform(frame=[None, 0], window=window[::-1])]


def test_filter_transform_selection_predicates():
    selector1 = alt.selection_interval(name="s1")
    selector2 = alt.selection_interval(name="s2")
    base = alt.Chart("data.txt").mark_point()

    chart = base.transform_filter(selector1)
    assert chart.to_dict()["transform"] == [{"filter": {"selection": "s1"}}]

    chart = base.transform_filter(~selector1)
    assert chart.to_dict()["transform"] == [{"filter": {"selection": {"not": "s1"}}}]

    chart = base.transform_filter(selector1 & selector2)
    assert chart.to_dict()["transform"] == [
        {"filter": {"selection": {"and": ["s1", "s2"]}}}
    ]

    chart = base.transform_filter(selector1 | selector2)
    assert chart.to_dict()["transform"] == [
        {"filter": {"selection": {"or": ["s1", "s2"]}}}
    ]

    chart = base.transform_filter(selector1 | ~selector2)
    assert chart.to_dict()["transform"] == [
        {"filter": {"selection": {"or": ["s1", {"not": "s2"}]}}}
    ]

    chart = base.transform_filter(~selector1 | ~selector2)
    assert chart.to_dict()["transform"] == [
        {"filter": {"selection": {"or": [{"not": "s1"}, {"not": "s2"}]}}}
    ]

    chart = base.transform_filter(~(selector1 & selector2))
    assert chart.to_dict()["transform"] == [
        {"filter": {"selection": {"not": {"and": ["s1", "s2"]}}}}
    ]


def test_resolve_methods():
    chart = alt.LayerChart().resolve_axis(x="shared", y="independent")
    assert chart.resolve == alt.Resolve(
        axis=alt.AxisResolveMap(x="shared", y="independent")
    )

    chart = alt.LayerChart().resolve_legend(color="shared", fill="independent")
    assert chart.resolve == alt.Resolve(
        legend=alt.LegendResolveMap(color="shared", fill="independent")
    )

    chart = alt.LayerChart().resolve_scale(x="shared", y="independent")
    assert chart.resolve == alt.Resolve(
        scale=alt.ScaleResolveMap(x="shared", y="independent")
    )


def test_layer_encodings():
    chart = alt.LayerChart().encode(x="column:Q")
    assert chart.encoding.x == alt.X(shorthand="column:Q")


def test_add_selection():
    selections = [
        alt.selection_interval(),
        alt.selection_single(),
        alt.selection_multi(),
    ]
    chart = (
        alt.Chart()
        .mark_point()
        .add_selection(selections[0])
        .add_selection(selections[1], selections[2])
    )
    expected = {s.name: s.selection for s in selections}
    assert chart.selection == expected


def test_repeat_add_selections():
    base = alt.Chart("data.csv").mark_point()
    selection = alt.selection_single()
    chart1 = base.add_selection(selection).repeat(list("ABC"))
    chart2 = base.repeat(list("ABC")).add_selection(selection)
    assert chart1.to_dict() == chart2.to_dict()


def test_facet_add_selections():
    base = alt.Chart("data.csv").mark_point()
    selection = alt.selection_single()
    chart1 = base.add_selection(selection).facet("val:Q")
    chart2 = base.facet("val:Q").add_selection(selection)
    assert chart1.to_dict() == chart2.to_dict()


def test_layer_add_selection():
    base = alt.Chart("data.csv").mark_point()
    selection = alt.selection_single()
    chart1 = alt.layer(base.add_selection(selection), base)
    chart2 = alt.layer(base, base).add_selection(selection)
    assert chart1.to_dict() == chart2.to_dict()


@pytest.mark.parametrize("charttype", [alt.concat, alt.hconcat, alt.vconcat])
def test_compound_add_selections(charttype):
    base = alt.Chart("data.csv").mark_point()
    selection = alt.selection_single()
    chart1 = charttype(base.add_selection(selection), base.add_selection(selection))
    chart2 = charttype(base, base).add_selection(selection)
    assert chart1.to_dict() == chart2.to_dict()


def test_selection_property():
    sel = alt.selection_interval()
    chart = alt.Chart("data.csv").mark_point().properties(selection=sel)

    assert list(chart["selection"].keys()) == [sel.name]


def test_LookupData():
    df = pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
    lookup = alt.LookupData(data=df, key="x")

    dct = lookup.to_dict()
    assert dct["key"] == "x"
    assert dct["data"] == {
        "values": [{"x": 1, "y": 4}, {"x": 2, "y": 5}, {"x": 3, "y": 6}]
    }


def test_themes():
    chart = alt.Chart("foo.txt").mark_point()
    active = alt.themes.active

    try:
        alt.themes.enable("default")
        assert chart.to_dict()["config"] == {
            "mark": {"tooltip": None},
            "view": {"width": 400, "height": 300},
        }

        alt.themes.enable("opaque")
        assert chart.to_dict()["config"] == {
            "background": "white",
            "mark": {"tooltip": None},
            "view": {"width": 400, "height": 300},
        }

        alt.themes.enable("none")
        assert "config" not in chart.to_dict()

    finally:
        # re-enable the original active theme
        alt.themes.enable(active)


def test_chart_from_dict():
    base = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q")

    charts = [
        base,
        base + base,
        base | base,
        base & base,
        base.facet("c:N"),
        (base + base).facet(row="c:N", data="data.csv"),
        base.repeat(["c", "d"]),
        (base + base).repeat(row=["c", "d"]),
    ]

    for chart in charts:
        print(chart)
        chart_out = alt.Chart.from_dict(chart.to_dict())
        assert type(chart_out) is type(chart)

    # test that an invalid spec leads to a schema validation error
    with pytest.raises(jsonschema.ValidationError):
        alt.Chart.from_dict({"invalid": "spec"})


def test_consolidate_datasets(basic_chart):
    subchart1 = basic_chart
    subchart2 = basic_chart.copy()
    subchart2.data = basic_chart.data.copy()
    chart = subchart1 | subchart2

    with alt.data_transformers.enable(consolidate_datasets=True):
        dct_consolidated = chart.to_dict()

    with alt.data_transformers.enable(consolidate_datasets=False):
        dct_standard = chart.to_dict()

    assert "datasets" in dct_consolidated
    assert "datasets" not in dct_standard

    datasets = dct_consolidated["datasets"]

    # two dataset copies should be recognized as duplicates
    assert len(datasets) == 1

    # make sure data matches original & names are correct
    name, data = datasets.popitem()

    for spec in dct_standard["hconcat"]:
        assert spec["data"]["values"] == data

    for spec in dct_consolidated["hconcat"]:
        assert spec["data"] == {"name": name}


def test_consolidate_InlineData():
    data = alt.InlineData(
        values=[{"a": 1, "b": 1}, {"a": 2, "b": 2}], format={"type": "csv"}
    )
    chart = alt.Chart(data).mark_point()

    with alt.data_transformers.enable(consolidate_datasets=False):
        dct = chart.to_dict()
    assert dct["data"]["format"] == data.format
    assert dct["data"]["values"] == data.values

    with alt.data_transformers.enable(consolidate_datasets=True):
        dct = chart.to_dict()
    assert dct["data"]["format"] == data.format
    assert list(dct["datasets"].values())[0] == data.values

    data = alt.InlineData(values=[], name="runtime_data")
    chart = alt.Chart(data).mark_point()

    with alt.data_transformers.enable(consolidate_datasets=False):
        dct = chart.to_dict()
    assert dct["data"] == data.to_dict()

    with alt.data_transformers.enable(consolidate_datasets=True):
        dct = chart.to_dict()
    assert dct["data"] == data.to_dict()


def test_deprecated_encodings():
    base = alt.Chart("data.txt").mark_point()

    with pytest.warns(AltairDeprecationWarning) as record:
        chart1 = base.encode(strokeOpacity=alt.Strokeopacity("x:Q")).to_dict()
    assert "alt.StrokeOpacity" in record[0].message.args[0]
    chart2 = base.encode(strokeOpacity=alt.StrokeOpacity("x:Q")).to_dict()

    assert chart1 == chart2


def test_repeat():
    # wrapped repeat
    chart1 = (
        alt.Chart("data.csv")
        .mark_point()
        .encode(
            x=alt.X(alt.repeat(), type="quantitative"),
            y="y:Q",
        )
        .repeat(["A", "B", "C", "D"], columns=2)
    )

    dct1 = chart1.to_dict()

    assert dct1["repeat"] == ["A", "B", "C", "D"]
    assert dct1["columns"] == 2
    assert dct1["spec"]["encoding"]["x"]["field"] == {"repeat": "repeat"}

    # explicit row/col repeat
    chart2 = (
        alt.Chart("data.csv")
        .mark_point()
        .encode(
            x=alt.X(alt.repeat("row"), type="quantitative"),
            y=alt.Y(alt.repeat("column"), type="quantitative"),
        )
        .repeat(row=["A", "B", "C"], column=["C", "B", "A"])
    )

    dct2 = chart2.to_dict()

    assert dct2["repeat"] == {"row": ["A", "B", "C"], "column": ["C", "B", "A"]}
    assert "columns" not in dct2
    assert dct2["spec"]["encoding"]["x"]["field"] == {"repeat": "row"}
    assert dct2["spec"]["encoding"]["y"]["field"] == {"repeat": "column"}


def test_data_property():
    data = pd.DataFrame({"x": [1, 2, 3], "y": list("ABC")})
    chart1 = alt.Chart(data).mark_point()
    chart2 = alt.Chart().mark_point().properties(data=data)

    assert chart1.to_dict() == chart2.to_dict()


@pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"])
@pytest.mark.parametrize(
    "data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})]
)
def test_subcharts_with_same_data(method, data):
    func = getattr(alt, method)

    point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
    line = point.mark_line()
    text = point.mark_text()

    chart1 = func(point, line, text)
    assert chart1.data is not alt.Undefined
    assert all(c.data is alt.Undefined for c in getattr(chart1, method))

    if method != "concat":
        op = OP_DICT[method]
        chart2 = op(op(point, line), text)
        assert chart2.data is not alt.Undefined
        assert all(c.data is alt.Undefined for c in getattr(chart2, method))


@pytest.mark.parametrize("method", ["layer", "hconcat", "vconcat", "concat"])
@pytest.mark.parametrize(
    "data", ["data.json", pd.DataFrame({"x": range(3), "y": list("abc")})]
)
def test_subcharts_different_data(method, data):
    func = getattr(alt, method)

    point = alt.Chart(data).mark_point().encode(x="x:Q", y="y:Q")
    otherdata = alt.Chart("data.csv").mark_point().encode(x="x:Q", y="y:Q")
    nodata = alt.Chart().mark_point().encode(x="x:Q", y="y:Q")

    chart1 = func(point, otherdata)
    assert chart1.data is alt.Undefined
    assert getattr(chart1, method)[0].data is data

    chart2 = func(point, nodata)
    assert chart2.data is alt.Undefined
    assert getattr(chart2, method)[0].data is data


def test_layer_facet(basic_chart):
    chart = (basic_chart + basic_chart).facet(row="row:Q")
    assert chart.data is not alt.Undefined
    assert chart.spec.data is alt.Undefined
    for layer in chart.spec.layer:
        assert layer.data is alt.Undefined

    dct = chart.to_dict()
    assert "data" in dct


def test_layer_errors():
    toplevel_chart = alt.Chart("data.txt").mark_point().configure_legend(columns=2)

    facet_chart1 = alt.Chart("data.txt").mark_point().encode(facet="row:Q")

    facet_chart2 = alt.Chart("data.txt").mark_point().facet("row:Q")

    repeat_chart = alt.Chart("data.txt").mark_point().repeat(["A", "B", "C"])

    simple_chart = alt.Chart("data.txt").mark_point()

    with pytest.raises(ValueError) as err:
        toplevel_chart + simple_chart
    assert str(err.value).startswith(
        'Objects with "config" attribute cannot be used within LayerChart.'
    )

    with pytest.raises(ValueError) as err:
        repeat_chart + simple_chart
    assert str(err.value) == "Repeat charts cannot be layered."

    with pytest.raises(ValueError) as err:
        facet_chart1 + simple_chart
    assert str(err.value) == "Faceted charts cannot be layered."

    with pytest.raises(ValueError) as err:
        alt.layer(simple_chart) + facet_chart2
    assert str(err.value) == "Faceted charts cannot be layered."


@pytest.mark.parametrize(
    "chart_type",
    ["layer", "hconcat", "vconcat", "concat", "facet", "facet_encoding", "repeat"],
)
def test_resolve(chart_type):
    chart = _make_chart_type(chart_type)
    chart = (
        chart.resolve_scale(
            x="independent",
        )
        .resolve_legend(color="independent")
        .resolve_axis(y="independent")
    )
    dct = chart.to_dict()
    assert dct["resolve"] == {
        "scale": {"x": "independent"},
        "legend": {"color": "independent"},
        "axis": {"y": "independent"},
    }


# TODO: test vconcat, hconcat, concat when schema allows them.
# This is blocked by https://github.com/vega/vega-lite/issues/5261
@pytest.mark.parametrize("chart_type", ["chart", "layer", "facet_encoding"])
@pytest.mark.parametrize("facet_arg", [None, "facet", "row", "column"])
def test_facet(chart_type, facet_arg):
    chart = _make_chart_type(chart_type)
    if facet_arg is None:
        chart = chart.facet("color:N", columns=2)
    else:
        chart = chart.facet(**{facet_arg: "color:N", "columns": 2})
    dct = chart.to_dict()

    assert "spec" in dct
    assert dct["columns"] == 2
    expected = {"field": "color", "type": "nominal"}
    if facet_arg is None or facet_arg == "facet":
        assert dct["facet"] == expected
    else:
        assert dct["facet"][facet_arg] == expected


def test_sequence():
    data = alt.sequence(100)
    assert data.to_dict() == {"sequence": {"start": 0, "stop": 100}}

    data = alt.sequence(5, 10)
    assert data.to_dict() == {"sequence": {"start": 5, "stop": 10}}

    data = alt.sequence(0, 1, 0.1, as_="x")
    assert data.to_dict() == {
        "sequence": {"start": 0, "stop": 1, "step": 0.1, "as": "x"}
    }


def test_graticule():
    data = alt.graticule()
    assert data.to_dict() == {"graticule": True}

    data = alt.graticule(step=[15, 15])
    assert data.to_dict() == {"graticule": {"step": [15, 15]}}


def test_sphere():
    data = alt.sphere()
    assert data.to_dict() == {"sphere": True}