Spaces:
Running
Running
File size: 89,700 Bytes
ba2f5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 |
import warnings
import hashlib
import io
import json
import jsonschema
import pandas as pd
from toolz.curried import pipe as _pipe
from .schema import core, channels, mixins, Undefined, SCHEMA_URL
from .data import data_transformers
from ... import utils, expr
from .display import renderers, VEGALITE_VERSION, VEGAEMBED_VERSION, VEGA_VERSION
from .theme import themes
# ------------------------------------------------------------------------
# Data Utilities
def _dataset_name(values):
"""Generate a unique hash of the data
Parameters
----------
values : list or dict
A list/dict representation of data values.
Returns
-------
name : string
A unique name generated from the hash of the values.
"""
if isinstance(values, core.InlineDataset):
values = values.to_dict()
if values == [{}]:
return "empty"
values_json = json.dumps(values, sort_keys=True)
hsh = hashlib.md5(values_json.encode()).hexdigest()
return "data-" + hsh
def _consolidate_data(data, context):
"""If data is specified inline, then move it to context['datasets']
This function will modify context in-place, and return a new version of data
"""
values = Undefined
kwds = {}
if isinstance(data, core.InlineData):
if data.name is Undefined and data.values is not Undefined:
if isinstance(data.values, core.InlineDataset):
values = data.to_dict()["values"]
else:
values = data.values
kwds = {"format": data.format}
elif isinstance(data, dict):
if "name" not in data and "values" in data:
values = data["values"]
kwds = {k: v for k, v in data.items() if k != "values"}
if values is not Undefined:
name = _dataset_name(values)
data = core.NamedData(name=name, **kwds)
context.setdefault("datasets", {})[name] = values
return data
def _prepare_data(data, context=None):
"""Convert input data to data for use within schema
Parameters
----------
data :
The input dataset in the form of a DataFrame, dictionary, altair data
object, or other type that is recognized by the data transformers.
context : dict (optional)
The to_dict context in which the data is being prepared. This is used
to keep track of information that needs to be passed up and down the
recursive serialization routine, such as global named datasets.
"""
if data is Undefined:
return data
# convert dataframes or objects with __geo_interface__ to dict
if isinstance(data, pd.DataFrame) or hasattr(data, "__geo_interface__"):
data = _pipe(data, data_transformers.get())
# convert string input to a URLData
if isinstance(data, str):
data = core.UrlData(data)
# consolidate inline data to top-level datasets
if context is not None and data_transformers.consolidate_datasets:
data = _consolidate_data(data, context)
# if data is still not a recognized type, then return
if not isinstance(data, (dict, core.Data)):
warnings.warn("data of type {} not recognized".format(type(data)))
return data
# ------------------------------------------------------------------------
# Aliases & specializations
Bin = core.BinParams
@utils.use_signature(core.LookupData)
class LookupData(core.LookupData):
def to_dict(self, *args, **kwargs):
"""Convert the chart to a dictionary suitable for JSON export."""
copy = self.copy(deep=False)
copy.data = _prepare_data(copy.data, kwargs.get("context"))
return super(LookupData, copy).to_dict(*args, **kwargs)
@utils.use_signature(core.FacetMapping)
class FacetMapping(core.FacetMapping):
_class_is_valid_at_instantiation = False
def to_dict(self, *args, **kwargs):
copy = self.copy(deep=False)
context = kwargs.get("context", {})
data = context.get("data", None)
if isinstance(self.row, str):
copy.row = core.FacetFieldDef(**utils.parse_shorthand(self.row, data))
if isinstance(self.column, str):
copy.column = core.FacetFieldDef(**utils.parse_shorthand(self.column, data))
return super(FacetMapping, copy).to_dict(*args, **kwargs)
# ------------------------------------------------------------------------
# Encoding will contain channel objects that aren't valid at instantiation
core.FacetedEncoding._class_is_valid_at_instantiation = False
# ------------------------------------------------------------------------
# These are parameters that are valid at the top level, but are not valid
# for specs that are within a composite chart
# (layer, hconcat, vconcat, facet, repeat)
TOPLEVEL_ONLY_KEYS = {"background", "config", "autosize", "padding", "$schema"}
def _get_channels_mapping():
mapping = {}
for attr in dir(channels):
cls = getattr(channels, attr)
if isinstance(cls, type) and issubclass(cls, core.SchemaBase):
mapping[cls] = attr.replace("Value", "").lower()
return mapping
# -------------------------------------------------------------------------
# Tools for working with selections
class Selection(object):
"""A Selection object"""
_counter = 0
@classmethod
def _get_name(cls):
cls._counter += 1
return "selector{:03d}".format(cls._counter)
def __init__(self, name, selection):
if name is None:
name = self._get_name()
self.name = name
self.selection = selection
def __repr__(self):
return "Selection({0!r}, {1})".format(self.name, self.selection)
def ref(self):
return self.to_dict()
def to_dict(self):
return {
"selection": self.name.to_dict()
if hasattr(self.name, "to_dict")
else self.name
}
def __invert__(self):
return Selection(core.SelectionNot(**{"not": self.name}), self.selection)
def __and__(self, other):
if isinstance(other, Selection):
other = other.name
return Selection(
core.SelectionAnd(**{"and": [self.name, other]}), self.selection
)
def __or__(self, other):
if isinstance(other, Selection):
other = other.name
return Selection(core.SelectionOr(**{"or": [self.name, other]}), self.selection)
def __getattr__(self, field_name):
if field_name.startswith("__") and field_name.endswith("__"):
raise AttributeError(field_name)
return expr.core.GetAttrExpression(self.name, field_name)
def __getitem__(self, field_name):
return expr.core.GetItemExpression(self.name, field_name)
# ------------------------------------------------------------------------
# Top-Level Functions
def value(value, **kwargs):
"""Specify a value for use in an encoding"""
return dict(value=value, **kwargs)
def selection(name=None, type=Undefined, **kwds):
"""Create a named selection.
Parameters
----------
name : string (optional)
The name of the selection. If not specified, a unique name will be
created.
type : string
The type of the selection: one of ["interval", "single", or "multi"]
**kwds :
additional keywords will be used to construct a SelectionDef instance
that controls the selection.
Returns
-------
selection: Selection
The selection object that can be used in chart creation.
"""
return Selection(name, core.SelectionDef(type=type, **kwds))
@utils.use_signature(core.IntervalSelection)
def selection_interval(**kwargs):
"""Create a selection with type='interval'"""
return selection(type="interval", **kwargs)
@utils.use_signature(core.MultiSelection)
def selection_multi(**kwargs):
"""Create a selection with type='multi'"""
return selection(type="multi", **kwargs)
@utils.use_signature(core.SingleSelection)
def selection_single(**kwargs):
"""Create a selection with type='single'"""
return selection(type="single", **kwargs)
@utils.use_signature(core.Binding)
def binding(input, **kwargs):
"""A generic binding"""
return core.Binding(input=input, **kwargs)
@utils.use_signature(core.BindCheckbox)
def binding_checkbox(**kwargs):
"""A checkbox binding"""
return core.BindCheckbox(input="checkbox", **kwargs)
@utils.use_signature(core.BindRadioSelect)
def binding_radio(**kwargs):
"""A radio button binding"""
return core.BindRadioSelect(input="radio", **kwargs)
@utils.use_signature(core.BindRadioSelect)
def binding_select(**kwargs):
"""A select binding"""
return core.BindRadioSelect(input="select", **kwargs)
@utils.use_signature(core.BindRange)
def binding_range(**kwargs):
"""A range binding"""
return core.BindRange(input="range", **kwargs)
def condition(predicate, if_true, if_false, **kwargs):
"""A conditional attribute or encoding
Parameters
----------
predicate: Selection, PredicateComposition, expr.Expression, dict, or string
the selection predicate or test predicate for the condition.
if a string is passed, it will be treated as a test operand.
if_true:
the spec or object to use if the selection predicate is true
if_false:
the spec or object to use if the selection predicate is false
**kwargs:
additional keyword args are added to the resulting dict
Returns
-------
spec: dict or VegaLiteSchema
the spec that describes the condition
"""
test_predicates = (str, expr.Expression, core.PredicateComposition)
if isinstance(predicate, Selection):
condition = {"selection": predicate.name}
elif isinstance(predicate, core.SelectionComposition):
condition = {"selection": predicate}
elif isinstance(predicate, test_predicates):
condition = {"test": predicate}
elif isinstance(predicate, dict):
condition = predicate
else:
raise NotImplementedError(
"condition predicate of type {}" "".format(type(predicate))
)
if isinstance(if_true, core.SchemaBase):
# convert to dict for now; the from_dict call below will wrap this
# dict in the appropriate schema
if_true = if_true.to_dict()
elif isinstance(if_true, str):
if_true = {"shorthand": if_true}
if_true.update(kwargs)
condition.update(if_true)
if isinstance(if_false, core.SchemaBase):
# For the selection, the channel definitions all allow selections
# already. So use this SchemaBase wrapper if possible.
selection = if_false.copy()
selection.condition = condition
elif isinstance(if_false, str):
selection = {"condition": condition, "shorthand": if_false}
selection.update(kwargs)
else:
selection = dict(condition=condition, **if_false)
return selection
# --------------------------------------------------------------------
# Top-level objects
class TopLevelMixin(mixins.ConfigMethodMixin):
"""Mixin for top-level chart objects such as Chart, LayeredChart, etc."""
_class_is_valid_at_instantiation = False
def to_dict(self, *args, **kwargs):
"""Convert the chart to a dictionary suitable for JSON export"""
# We make use of three context markers:
# - 'data' points to the data that should be referenced for column type
# inference.
# - 'top_level' is a boolean flag that is assumed to be true; if it's
# true then a "$schema" arg is added to the dict.
# - 'datasets' is a dict of named datasets that should be inserted
# in the top-level object
# note: not a deep copy because we want datasets and data arguments to
# be passed by reference
context = kwargs.get("context", {}).copy()
context.setdefault("datasets", {})
is_top_level = context.get("top_level", True)
copy = self.copy(deep=False)
original_data = getattr(copy, "data", Undefined)
copy.data = _prepare_data(original_data, context)
if original_data is not Undefined:
context["data"] = original_data
# remaining to_dict calls are not at top level
context["top_level"] = False
kwargs["context"] = context
try:
dct = super(TopLevelMixin, copy).to_dict(*args, **kwargs)
except jsonschema.ValidationError:
dct = None
# If we hit an error, then re-convert with validate='deep' to get
# a more useful traceback. We don't do this by default because it's
# much slower in the case that there are no errors.
if dct is None:
kwargs["validate"] = "deep"
dct = super(TopLevelMixin, copy).to_dict(*args, **kwargs)
# TODO: following entries are added after validation. Should they be validated?
if is_top_level:
# since this is top-level we add $schema if it's missing
if "$schema" not in dct:
dct["$schema"] = SCHEMA_URL
# apply theme from theme registry
the_theme = themes.get()
dct = utils.update_nested(the_theme(), dct, copy=True)
# update datasets
if context["datasets"]:
dct.setdefault("datasets", {}).update(context["datasets"])
return dct
def to_html(
self,
base_url="https://cdn.jsdelivr.net/npm/",
output_div="vis",
embed_options=None,
json_kwds=None,
fullhtml=True,
requirejs=False,
):
return utils.spec_to_html(
self.to_dict(),
mode="vega-lite",
vegalite_version=VEGALITE_VERSION,
vegaembed_version=VEGAEMBED_VERSION,
vega_version=VEGA_VERSION,
base_url=base_url,
output_div=output_div,
embed_options=embed_options,
json_kwds=json_kwds,
fullhtml=fullhtml,
requirejs=requirejs,
)
def save(
self,
fp,
format=None,
override_data_transformer=True,
scale_factor=1.0,
vegalite_version=VEGALITE_VERSION,
vega_version=VEGA_VERSION,
vegaembed_version=VEGAEMBED_VERSION,
**kwargs,
):
"""Save a chart to file in a variety of formats
Supported formats are json, html, png, svg, pdf; the last three require
the altair_saver package to be installed.
Parameters
----------
fp : string filename or file-like object
file in which to write the chart.
format : string (optional)
the format to write: one of ['json', 'html', 'png', 'svg', 'pdf'].
If not specified, the format will be determined from the filename.
override_data_transformer : boolean (optional)
If True (default), then the save action will be done with
the MaxRowsError disabled. If False, then do not change the data
transformer.
scale_factor : float
For svg or png formats, scale the image by this factor when saving.
This can be used to control the size or resolution of the output.
Default is 1.0
**kwargs :
Additional keyword arguments are passed to the output method
associated with the specified format.
"""
from ...utils.save import save
kwds = dict(
chart=self,
fp=fp,
format=format,
scale_factor=scale_factor,
vegalite_version=vegalite_version,
vega_version=vega_version,
vegaembed_version=vegaembed_version,
**kwargs,
)
# By default we override the data transformer. This makes it so
# that save() will succeed even for large datasets that would
# normally trigger a MaxRowsError
if override_data_transformer:
with data_transformers.disable_max_rows():
result = save(**kwds)
else:
result = save(**kwds)
return result
# Fallback for when rendering fails; the full repr is too long to be
# useful in nearly all cases.
def __repr__(self):
return "alt.{}(...)".format(self.__class__.__name__)
# Layering and stacking
def __add__(self, other):
if not isinstance(other, TopLevelMixin):
raise ValueError("Only Chart objects can be layered.")
return layer(self, other)
def __and__(self, other):
if not isinstance(other, TopLevelMixin):
raise ValueError("Only Chart objects can be concatenated.")
return vconcat(self, other)
def __or__(self, other):
if not isinstance(other, TopLevelMixin):
raise ValueError("Only Chart objects can be concatenated.")
return hconcat(self, other)
def repeat(
self,
repeat=Undefined,
row=Undefined,
column=Undefined,
layer=Undefined,
columns=Undefined,
**kwargs,
):
"""Return a RepeatChart built from the chart
Fields within the chart can be set to correspond to the row or
column using `alt.repeat('row')` and `alt.repeat('column')`.
Parameters
----------
repeat : list
a list of data column names to be repeated. This cannot be
used along with the ``row``, ``column`` or ``layer`` argument.
row : list
a list of data column names to be mapped to the row facet
column : list
a list of data column names to be mapped to the column facet
layer : list
a list of data column names to be layered. This cannot be
used along with the ``row``, ``column`` or ``repeat`` argument.
columns : int
the maximum number of columns before wrapping. Only referenced
if ``repeat`` is specified.
**kwargs :
additional keywords passed to RepeatChart.
Returns
-------
chart : RepeatChart
a repeated chart.
"""
repeat_specified = repeat is not Undefined
rowcol_specified = row is not Undefined or column is not Undefined
layer_specified = layer is not Undefined
if repeat_specified and rowcol_specified:
raise ValueError(
"repeat argument cannot be combined with row/column argument."
)
elif repeat_specified and layer_specified:
raise ValueError("repeat argument cannot be combined with layer argument.")
elif layer_specified and rowcol_specified:
raise ValueError(
"layer argument cannot be combined with row/column argument."
)
if repeat_specified:
repeat = repeat
elif layer_specified:
repeat = core.LayerRepeatMapping(layer=layer)
else:
repeat = core.RepeatMapping(row=row, column=column)
return RepeatChart(spec=self, repeat=repeat, columns=columns, **kwargs)
def properties(self, **kwargs):
"""Set top-level properties of the Chart.
Argument names and types are the same as class initialization.
"""
copy = self.copy(deep=False)
for key, val in kwargs.items():
if key == "selection" and isinstance(val, Selection):
# For backward compatibility with old selection interface.
setattr(copy, key, {val.name: val.selection})
else:
# Don't validate data, because it hasn't been processed.
if key != "data":
self.validate_property(key, val)
setattr(copy, key, val)
return copy
def project(
self,
type="mercator",
center=Undefined,
clipAngle=Undefined,
clipExtent=Undefined,
coefficient=Undefined,
distance=Undefined,
fraction=Undefined,
lobes=Undefined,
parallel=Undefined,
precision=Undefined,
radius=Undefined,
ratio=Undefined,
reflectX=Undefined,
reflectY=Undefined,
rotate=Undefined,
scale=Undefined,
spacing=Undefined,
tilt=Undefined,
translate=Undefined,
**kwds,
):
"""Add a geographic projection to the chart.
This is generally used either with ``mark_geoshape`` or with the
``latitude``/``longitude`` encodings.
Available projection types are
['albers', 'albersUsa', 'azimuthalEqualArea', 'azimuthalEquidistant',
'conicConformal', 'conicEqualArea', 'conicEquidistant', 'equalEarth', 'equirectangular',
'gnomonic', 'identity', 'mercator', 'orthographic', 'stereographic', 'transverseMercator']
Attributes
----------
type : ProjectionType
The cartographic projection to use. This value is case-insensitive, for example
`"albers"` and `"Albers"` indicate the same projection type. You can find all valid
projection types [in the
documentation](https://vega.github.io/vega-lite/docs/projection.html#projection-types).
**Default value:** `mercator`
center : List(float)
Sets the projection’s center to the specified center, a two-element array of
longitude and latitude in degrees.
**Default value:** `[0, 0]`
clipAngle : float
Sets the projection’s clipping circle radius to the specified angle in degrees. If
`null`, switches to [antimeridian](http://bl.ocks.org/mbostock/3788999) cutting
rather than small-circle clipping.
clipExtent : List(List(float))
Sets the projection’s viewport clip extent to the specified bounds in pixels. The
extent bounds are specified as an array `[[x0, y0], [x1, y1]]`, where `x0` is the
left-side of the viewport, `y0` is the top, `x1` is the right and `y1` is the
bottom. If `null`, no viewport clipping is performed.
coefficient : float
distance : float
fraction : float
lobes : float
parallel : float
precision : Mapping(required=[length])
Sets the threshold for the projection’s [adaptive
resampling](http://bl.ocks.org/mbostock/3795544) to the specified value in pixels.
This value corresponds to the [Douglas–Peucker
distance](http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm).
If precision is not specified, returns the projection’s current resampling
precision which defaults to `√0.5 ≅ 0.70710…`.
radius : float
ratio : float
reflectX : boolean
reflectY : boolean
rotate : List(float)
Sets the projection’s three-axis rotation to the specified angles, which must be a
two- or three-element array of numbers [`lambda`, `phi`, `gamma`] specifying the
rotation angles in degrees about each spherical axis. (These correspond to yaw,
pitch and roll.)
**Default value:** `[0, 0, 0]`
scale : float
Sets the projection's scale (zoom) value, overriding automatic fitting.
spacing : float
tilt : float
translate : List(float)
Sets the projection's translation (pan) value, overriding automatic fitting.
"""
projection = core.Projection(
center=center,
clipAngle=clipAngle,
clipExtent=clipExtent,
coefficient=coefficient,
distance=distance,
fraction=fraction,
lobes=lobes,
parallel=parallel,
precision=precision,
radius=radius,
ratio=ratio,
reflectX=reflectX,
reflectY=reflectY,
rotate=rotate,
scale=scale,
spacing=spacing,
tilt=tilt,
translate=translate,
type=type,
**kwds,
)
return self.properties(projection=projection)
def _add_transform(self, *transforms):
"""Copy the chart and add specified transforms to chart.transform"""
copy = self.copy(deep=["transform"])
if copy.transform is Undefined:
copy.transform = []
copy.transform.extend(transforms)
return copy
def transform_aggregate(self, aggregate=Undefined, groupby=Undefined, **kwds):
"""
Add an AggregateTransform to the schema.
Parameters
----------
aggregate : List(:class:`AggregatedFieldDef`)
Array of objects that define fields to aggregate.
groupby : List(string)
The data fields to group by. If not specified, a single group containing all data
objects will be used.
**kwds :
additional keywords are converted to aggregates using standard
shorthand parsing.
Returns
-------
self : Chart object
returns chart to allow for chaining
Examples
--------
The aggregate transform allows you to specify transforms directly using
the same shorthand syntax as used in encodings:
>>> import altair as alt
>>> chart1 = alt.Chart().transform_aggregate(
... mean_acc='mean(Acceleration)',
... groupby=['Origin']
... )
>>> print(chart1.transform[0].to_json()) # doctest: +NORMALIZE_WHITESPACE
{
"aggregate": [
{
"as": "mean_acc",
"field": "Acceleration",
"op": "mean"
}
],
"groupby": [
"Origin"
]
}
It also supports including AggregatedFieldDef instances or dicts directly,
so you can create the above transform like this:
>>> chart2 = alt.Chart().transform_aggregate(
... [alt.AggregatedFieldDef(field='Acceleration', op='mean',
... **{'as': 'mean_acc'})],
... groupby=['Origin']
... )
>>> chart2.transform == chart1.transform
True
See Also
--------
alt.AggregateTransform : underlying transform object
"""
if aggregate is Undefined:
aggregate = []
for key, val in kwds.items():
parsed = utils.parse_shorthand(val)
dct = {
"as": key,
"field": parsed.get("field", Undefined),
"op": parsed.get("aggregate", Undefined),
}
aggregate.append(core.AggregatedFieldDef(**dct))
return self._add_transform(
core.AggregateTransform(aggregate=aggregate, groupby=groupby)
)
def transform_bin(self, as_=Undefined, field=Undefined, bin=True, **kwargs):
"""
Add a BinTransform to the schema.
Parameters
----------
as_ : anyOf(string, List(string))
The output fields at which to write the start and end bin values.
bin : anyOf(boolean, :class:`BinParams`)
An object indicating bin properties, or simply ``true`` for using default bin
parameters.
field : string
The data field to bin.
Returns
-------
self : Chart object
returns chart to allow for chaining
Examples
--------
>>> import altair as alt
>>> chart = alt.Chart().transform_bin("x_binned", "x")
>>> chart.transform[0]
BinTransform({
as: 'x_binned',
bin: True,
field: 'x'
})
>>> chart = alt.Chart().transform_bin("x_binned", "x",
... bin=alt.Bin(maxbins=10))
>>> chart.transform[0]
BinTransform({
as: 'x_binned',
bin: BinParams({
maxbins: 10
}),
field: 'x'
})
See Also
--------
alt.BinTransform : underlying transform object
"""
if as_ is not Undefined:
if "as" in kwargs:
raise ValueError(
"transform_bin: both 'as_' and 'as' passed as arguments."
)
kwargs["as"] = as_
kwargs["bin"] = bin
kwargs["field"] = field
return self._add_transform(core.BinTransform(**kwargs))
def transform_calculate(self, as_=Undefined, calculate=Undefined, **kwargs):
"""
Add a CalculateTransform to the schema.
Parameters
----------
as_ : string
The field for storing the computed formula value.
calculate : string or alt.expr expression
A `expression <https://vega.github.io/vega-lite/docs/types.html#expression>`__
string. Use the variable ``datum`` to refer to the current data object.
**kwargs
transforms can also be passed by keyword argument; see Examples
Returns
-------
self : Chart object
returns chart to allow for chaining
Examples
--------
>>> import altair as alt
>>> from altair import datum, expr
>>> chart = alt.Chart().transform_calculate(y = 2 * expr.sin(datum.x))
>>> chart.transform[0]
CalculateTransform({
as: 'y',
calculate: (2 * sin(datum.x))
})
It's also possible to pass the ``CalculateTransform`` arguments directly:
>>> kwds = {'as': 'y', 'calculate': '2 * sin(datum.x)'}
>>> chart = alt.Chart().transform_calculate(**kwds)
>>> chart.transform[0]
CalculateTransform({
as: 'y',
calculate: '2 * sin(datum.x)'
})
As the first form is easier to write and understand, that is the
recommended method.
See Also
--------
alt.CalculateTransform : underlying transform object
"""
if as_ is Undefined:
as_ = kwargs.pop("as", Undefined)
elif "as" in kwargs:
raise ValueError(
"transform_calculate: both 'as_' and 'as' passed as arguments."
)
if as_ is not Undefined or calculate is not Undefined:
dct = {"as": as_, "calculate": calculate}
self = self._add_transform(core.CalculateTransform(**dct))
for as_, calculate in kwargs.items():
dct = {"as": as_, "calculate": calculate}
self = self._add_transform(core.CalculateTransform(**dct))
return self
def transform_density(
self,
density,
as_=Undefined,
bandwidth=Undefined,
counts=Undefined,
cumulative=Undefined,
extent=Undefined,
groupby=Undefined,
maxsteps=Undefined,
minsteps=Undefined,
steps=Undefined,
):
"""Add a DensityTransform to the spec.
Attributes
----------
density : str
The data field for which to perform density estimation.
as_ : [str, str]
The output fields for the sample value and corresponding density estimate.
**Default value:** ``["value", "density"]``
bandwidth : float
The bandwidth (standard deviation) of the Gaussian kernel. If unspecified or set to
zero, the bandwidth value is automatically estimated from the input data using
Scott’s rule.
counts : boolean
A boolean flag indicating if the output values should be probability estimates
(false) or smoothed counts (true).
**Default value:** ``false``
cumulative : boolean
A boolean flag indicating whether to produce density estimates (false) or cumulative
density estimates (true).
**Default value:** ``false``
extent : List([float, float])
A [min, max] domain from which to sample the distribution. If unspecified, the
extent will be determined by the observed minimum and maximum values of the density
value field.
groupby : List(str)
The data fields to group by. If not specified, a single group containing all data
objects will be used.
maxsteps : float
The maximum number of samples to take along the extent domain for plotting the
density. **Default value:** ``200``
minsteps : float
The minimum number of samples to take along the extent domain for plotting the
density. **Default value:** ``25``
steps : float
The exact number of samples to take along the extent domain for plotting the
density. If specified, overrides both minsteps and maxsteps to set an exact number
of uniform samples. Potentially useful in conjunction with a fixed extent to ensure
consistent sample points for stacked densities.
"""
return self._add_transform(
core.DensityTransform(
density=density,
bandwidth=bandwidth,
counts=counts,
cumulative=cumulative,
extent=extent,
groupby=groupby,
maxsteps=maxsteps,
minsteps=minsteps,
steps=steps,
**{"as": as_},
)
)
def transform_impute(
self,
impute,
key,
frame=Undefined,
groupby=Undefined,
keyvals=Undefined,
method=Undefined,
value=Undefined,
):
"""
Add an ImputeTransform to the schema.
Parameters
----------
impute : string
The data field for which the missing values should be imputed.
key : string
A key field that uniquely identifies data objects within a group.
Missing key values (those occurring in the data but not in the current group) will
be imputed.
frame : List(anyOf(None, float))
A frame specification as a two-element array used to control the window over which
the specified method is applied. The array entries should either be a number
indicating the offset from the current data object, or null to indicate unbounded
rows preceding or following the current data object. For example, the value ``[-5,
5]`` indicates that the window should include five objects preceding and five
objects following the current object.
**Default value:** : ``[null, null]`` indicating that the window includes all
objects.
groupby : List(string)
An optional array of fields by which to group the values.
Imputation will then be performed on a per-group basis.
keyvals : anyOf(List(Mapping(required=[])), :class:`ImputeSequence`)
Defines the key values that should be considered for imputation.
An array of key values or an object defining a `number sequence
<https://vega.github.io/vega-lite/docs/impute.html#sequence-def>`__.
If provided, this will be used in addition to the key values observed within the
input data. If not provided, the values will be derived from all unique values of
the ``key`` field. For ``impute`` in ``encoding``, the key field is the x-field if
the y-field is imputed, or vice versa.
If there is no impute grouping, this property *must* be specified.
method : :class:`ImputeMethod`
The imputation method to use for the field value of imputed data objects.
One of ``value``, ``mean``, ``median``, ``max`` or ``min``.
**Default value:** ``"value"``
value : Mapping(required=[])
The field value to use when the imputation ``method`` is ``"value"``.
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.ImputeTransform : underlying transform object
"""
return self._add_transform(
core.ImputeTransform(
impute=impute,
key=key,
frame=frame,
groupby=groupby,
keyvals=keyvals,
method=method,
value=value,
)
)
def transform_joinaggregate(
self, joinaggregate=Undefined, groupby=Undefined, **kwargs
):
"""
Add a JoinAggregateTransform to the schema.
Parameters
----------
joinaggregate : List(:class:`JoinAggregateFieldDef`)
The definition of the fields in the join aggregate, and what calculations to use.
groupby : List(string)
The data fields for partitioning the data objects into separate groups. If
unspecified, all data points will be in a single group.
**kwargs
joinaggregates can also be passed by keyword argument; see Examples.
Returns
-------
self : Chart object
returns chart to allow for chaining
Examples
--------
>>> import altair as alt
>>> chart = alt.Chart().transform_joinaggregate(x='sum(y)')
>>> chart.transform[0]
JoinAggregateTransform({
joinaggregate: [JoinAggregateFieldDef({
as: 'x',
field: 'y',
op: 'sum'
})]
})
See Also
--------
alt.JoinAggregateTransform : underlying transform object
"""
if joinaggregate is Undefined:
joinaggregate = []
for key, val in kwargs.items():
parsed = utils.parse_shorthand(val)
dct = {
"as": key,
"field": parsed.get("field", Undefined),
"op": parsed.get("aggregate", Undefined),
}
joinaggregate.append(core.JoinAggregateFieldDef(**dct))
return self._add_transform(
core.JoinAggregateTransform(joinaggregate=joinaggregate, groupby=groupby)
)
def transform_filter(self, filter, **kwargs):
"""
Add a FilterTransform to the schema.
Parameters
----------
filter : a filter expression or :class:`PredicateComposition`
The `filter` property must be one of the predicate definitions:
(1) a string or alt.expr expression
(2) a range predicate
(3) a selection predicate
(4) a logical operand combining (1)-(3)
(5) a Selection object
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.FilterTransform : underlying transform object
"""
if isinstance(filter, Selection):
filter = {"selection": filter.name}
elif isinstance(filter, core.SelectionComposition):
filter = {"selection": filter}
return self._add_transform(core.FilterTransform(filter=filter, **kwargs))
def transform_flatten(self, flatten, as_=Undefined):
"""Add a FlattenTransform to the schema.
Parameters
----------
flatten : List(string)
An array of one or more data fields containing arrays to flatten.
If multiple fields are specified, their array values should have a parallel
structure, ideally with the same length.
If the lengths of parallel arrays do not match,
the longest array will be used with ``null`` values added for missing entries.
as : List(string)
The output field names for extracted array values.
**Default value:** The field name of the corresponding array field
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.FlattenTransform : underlying transform object
"""
return self._add_transform(
core.FlattenTransform(flatten=flatten, **{"as": as_})
)
def transform_fold(self, fold, as_=Undefined):
"""Add a FoldTransform to the spec.
Parameters
----------
fold : List(string)
An array of data fields indicating the properties to fold.
as : [string, string]
The output field names for the key and value properties produced by the fold
transform. Default: ``["key", "value"]``
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
Chart.transform_pivot : pivot transform - opposite of fold.
alt.FoldTransform : underlying transform object
"""
return self._add_transform(core.FoldTransform(fold=fold, **{"as": as_}))
def transform_loess(
self, on, loess, as_=Undefined, bandwidth=Undefined, groupby=Undefined
):
"""Add a LoessTransform to the spec.
Parameters
----------
on : str
The data field of the independent variable to use a predictor.
loess : str
The data field of the dependent variable to smooth.
as_ : [str, str]
The output field names for the smoothed points generated by the loess transform.
**Default value:** The field names of the input x and y values.
bandwidth : float
A bandwidth parameter in the range ``[0, 1]`` that determines the amount of
smoothing. **Default value:** ``0.3``
groupby : List(str)
The data fields to group by. If not specified, a single group containing all data
objects will be used.
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
Chart.transform_regression: regression transform
alt.LoessTransform : underlying transform object
"""
return self._add_transform(
core.LoessTransform(
loess=loess, on=on, bandwidth=bandwidth, groupby=groupby, **{"as": as_}
)
)
def transform_lookup(
self,
lookup=Undefined,
from_=Undefined,
as_=Undefined,
default=Undefined,
**kwargs,
):
"""Add a DataLookupTransform or SelectionLookupTransform to the chart
Attributes
----------
lookup : string
Key in primary data source.
from_ : anyOf(:class:`LookupData`, :class:`LookupSelection`)
Secondary data reference.
as_ : anyOf(string, List(string))
The output fields on which to store the looked up data values.
For data lookups, this property may be left blank if ``from_.fields``
has been specified (those field names will be used); if ``from_.fields``
has not been specified, ``as_`` must be a string.
For selection lookups, this property is optional: if unspecified,
looked up values will be stored under a property named for the selection;
and if specified, it must correspond to ``from_.fields``.
default : string
The default value to use if lookup fails. **Default value:** ``null``
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.DataLookupTransform : underlying transform object
alt.SelectionLookupTransform : underlying transform object
"""
if as_ is not Undefined:
if "as" in kwargs:
raise ValueError(
"transform_lookup: both 'as_' and 'as' passed as arguments."
)
kwargs["as"] = as_
if from_ is not Undefined:
if "from" in kwargs:
raise ValueError(
"transform_lookup: both 'from_' and 'from' passed as arguments."
)
kwargs["from"] = from_
kwargs["lookup"] = lookup
kwargs["default"] = default
return self._add_transform(core.LookupTransform(**kwargs))
def transform_pivot(
self, pivot, value, groupby=Undefined, limit=Undefined, op=Undefined
):
"""Add a pivot transform to the chart.
Parameters
----------
pivot : str
The data field to pivot on. The unique values of this field become new field names
in the output stream.
value : str
The data field to populate pivoted fields. The aggregate values of this field become
the values of the new pivoted fields.
groupby : List(str)
The optional data fields to group by. If not specified, a single group containing
all data objects will be used.
limit : float
An optional parameter indicating the maximum number of pivoted fields to generate.
The default ( ``0`` ) applies no limit. The pivoted ``pivot`` names are sorted in
ascending order prior to enforcing the limit.
**Default value:** ``0``
op : string
The aggregation operation to apply to grouped ``value`` field values.
**Default value:** ``sum``
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
Chart.transform_fold : fold transform - opposite of pivot.
alt.PivotTransform : underlying transform object
"""
return self._add_transform(
core.PivotTransform(
pivot=pivot, value=value, groupby=groupby, limit=limit, op=op
)
)
def transform_quantile(
self,
quantile,
as_=Undefined,
groupby=Undefined,
probs=Undefined,
step=Undefined,
):
"""Add a quantile transform to the chart
Parameters
----------
quantile : str
The data field for which to perform quantile estimation.
as : [str, str]
The output field names for the probability and quantile values.
groupby : List(str)
The data fields to group by. If not specified, a single group containing all data
objects will be used.
probs : List(float)
An array of probabilities in the range (0, 1) for which to compute quantile values.
If not specified, the *step* parameter will be used.
step : float
A probability step size (default 0.01) for sampling quantile values. All values from
one-half the step size up to 1 (exclusive) will be sampled. This parameter is only
used if the *probs* parameter is not provided. **Default value:** ``["prob", "value"]``
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.QuantileTransform : underlying transform object
"""
return self._add_transform(
core.QuantileTransform(
quantile=quantile,
groupby=groupby,
probs=probs,
step=step,
**{"as": as_},
)
)
def transform_regression(
self,
on,
regression,
as_=Undefined,
extent=Undefined,
groupby=Undefined,
method=Undefined,
order=Undefined,
params=Undefined,
):
"""Add a RegressionTransform to the chart.
Parameters
----------
on : str
The data field of the independent variable to use a predictor.
regression : str
The data field of the dependent variable to predict.
as_ : [str, str]
The output field names for the smoothed points generated by the regression
transform. **Default value:** The field names of the input x and y values.
extent : [float, float]
A [min, max] domain over the independent (x) field for the starting and ending
points of the generated trend line.
groupby : List(str)
The data fields to group by. If not specified, a single group containing all data
objects will be used.
method : enum('linear', 'log', 'exp', 'pow', 'quad', 'poly')
The functional form of the regression model. One of ``"linear"``, ``"log"``,
``"exp"``, ``"pow"``, ``"quad"``, or ``"poly"``. **Default value:** ``"linear"``
order : float
The polynomial order (number of coefficients) for the 'poly' method.
**Default value:** ``3``
params : boolean
A boolean flag indicating if the transform should return the regression model
parameters (one object per group), rather than trend line points.
The resulting objects include a ``coef`` array of fitted coefficient values
(starting with the intercept term and then including terms of increasing order)
and an ``rSquared`` value (indicating the total variance explained by the model).
**Default value:** ``false``
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
Chart.transform_loess : LOESS transform
alt.RegressionTransform : underlying transform object
"""
return self._add_transform(
core.RegressionTransform(
regression=regression,
on=on,
extent=extent,
groupby=groupby,
method=method,
order=order,
params=params,
**{"as": as_},
)
)
def transform_sample(self, sample=1000):
"""
Add a SampleTransform to the schema.
Parameters
----------
sample : float
The maximum number of data objects to include in the sample. Default: 1000.
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.SampleTransform : underlying transform object
"""
return self._add_transform(core.SampleTransform(sample))
def transform_stack(self, as_, stack, groupby, offset=Undefined, sort=Undefined):
"""
Add a StackTransform to the schema.
Parameters
----------
as_ : anyOf(string, List(string))
Output field names. This can be either a string or an array of strings with
two elements denoting the name for the fields for stack start and stack end
respectively.
If a single string(eg."val") is provided, the end field will be "val_end".
stack : string
The field which is stacked.
groupby : List(string)
The data fields to group by.
offset : enum('zero', 'center', 'normalize')
Mode for stacking marks. Default: 'zero'.
sort : List(:class:`SortField`)
Field that determines the order of leaves in the stacked charts.
Returns
-------
self : Chart object
returns chart to allow for chaining
See Also
--------
alt.StackTransform : underlying transform object
"""
return self._add_transform(
core.StackTransform(
stack=stack, groupby=groupby, offset=offset, sort=sort, **{"as": as_}
)
)
def transform_timeunit(
self, as_=Undefined, field=Undefined, timeUnit=Undefined, **kwargs
):
"""
Add a TimeUnitTransform to the schema.
Parameters
----------
as_ : string
The output field to write the timeUnit value.
field : string
The data field to apply time unit.
timeUnit : :class:`TimeUnit`
The timeUnit.
**kwargs
transforms can also be passed by keyword argument; see Examples
Returns
-------
self : Chart object
returns chart to allow for chaining
Examples
--------
>>> import altair as alt
>>> from altair import datum, expr
>>> chart = alt.Chart().transform_timeunit(month='month(date)')
>>> chart.transform[0]
TimeUnitTransform({
as: 'month',
field: 'date',
timeUnit: 'month'
})
It's also possible to pass the ``TimeUnitTransform`` arguments directly;
this is most useful in cases where the desired field name is not a
valid python identifier:
>>> kwds = {'as': 'month', 'timeUnit': 'month', 'field': 'The Month'}
>>> chart = alt.Chart().transform_timeunit(**kwds)
>>> chart.transform[0]
TimeUnitTransform({
as: 'month',
field: 'The Month',
timeUnit: 'month'
})
As the first form is easier to write and understand, that is the
recommended method.
See Also
--------
alt.TimeUnitTransform : underlying transform object
"""
if as_ is Undefined:
as_ = kwargs.pop("as", Undefined)
else:
if "as" in kwargs:
raise ValueError(
"transform_timeunit: both 'as_' and 'as' passed as arguments."
)
if as_ is not Undefined:
dct = {"as": as_, "timeUnit": timeUnit, "field": field}
self = self._add_transform(core.TimeUnitTransform(**dct))
for as_, shorthand in kwargs.items():
dct = utils.parse_shorthand(
shorthand,
parse_timeunits=True,
parse_aggregates=False,
parse_types=False,
)
dct.pop("type", None)
dct["as"] = as_
if "timeUnit" not in dct:
raise ValueError("'{}' must include a valid timeUnit".format(shorthand))
self = self._add_transform(core.TimeUnitTransform(**dct))
return self
def transform_window(
self,
window=Undefined,
frame=Undefined,
groupby=Undefined,
ignorePeers=Undefined,
sort=Undefined,
**kwargs,
):
"""Add a WindowTransform to the schema
Parameters
----------
window : List(:class:`WindowFieldDef`)
The definition of the fields in the window, and what calculations to use.
frame : List(anyOf(None, float))
A frame specification as a two-element array indicating how the sliding window
should proceed. The array entries should either be a number indicating the offset
from the current data object, or null to indicate unbounded rows preceding or
following the current data object. The default value is ``[null, 0]``, indicating
that the sliding window includes the current object and all preceding objects. The
value ``[-5, 5]`` indicates that the window should include five objects preceding
and five objects following the current object. Finally, ``[null, null]`` indicates
that the window frame should always include all data objects. The only operators
affected are the aggregation operations and the ``first_value``, ``last_value``, and
``nth_value`` window operations. The other window operations are not affected by
this.
**Default value:** : ``[null, 0]`` (includes the current object and all preceding
objects)
groupby : List(string)
The data fields for partitioning the data objects into separate windows. If
unspecified, all data points will be in a single group.
ignorePeers : boolean
Indicates if the sliding window frame should ignore peer values. (Peer values are
those considered identical by the sort criteria). The default is false, causing the
window frame to expand to include all peer values. If set to true, the window frame
will be defined by offset values only. This setting only affects those operations
that depend on the window frame, namely aggregation operations and the first_value,
last_value, and nth_value window operations.
**Default value:** ``false``
sort : List(:class:`SortField`)
A sort field definition for sorting data objects within a window. If two data
objects are considered equal by the comparator, they are considered “peer” values of
equal rank. If sort is not specified, the order is undefined: data objects are
processed in the order they are observed and none are considered peers (the
ignorePeers parameter is ignored and treated as if set to ``true`` ).
**kwargs
transforms can also be passed by keyword argument; see Examples
Examples
--------
A cumulative line chart
>>> import altair as alt
>>> import numpy as np
>>> import pandas as pd
>>> data = pd.DataFrame({'x': np.arange(100),
... 'y': np.random.randn(100)})
>>> chart = alt.Chart(data).mark_line().encode(
... x='x:Q',
... y='ycuml:Q'
... ).transform_window(
... ycuml='sum(y)'
... )
>>> chart.transform[0]
WindowTransform({
window: [WindowFieldDef({
as: 'ycuml',
field: 'y',
op: 'sum'
})]
})
"""
if kwargs:
if window is Undefined:
window = []
for as_, shorthand in kwargs.items():
kwds = {"as": as_}
kwds.update(
utils.parse_shorthand(
shorthand,
parse_aggregates=False,
parse_window_ops=True,
parse_timeunits=False,
parse_types=False,
)
)
window.append(core.WindowFieldDef(**kwds))
return self._add_transform(
core.WindowTransform(
window=window,
frame=frame,
groupby=groupby,
ignorePeers=ignorePeers,
sort=sort,
)
)
# Display-related methods
def _repr_mimebundle_(self, include=None, exclude=None):
"""Return a MIME bundle for display in Jupyter frontends."""
# Catch errors explicitly to get around issues in Jupyter frontend
# see https://github.com/ipython/ipython/issues/11038
try:
dct = self.to_dict()
except Exception:
utils.display_traceback(in_ipython=True)
return {}
else:
return renderers.get()(dct)
def display(self, renderer=Undefined, theme=Undefined, actions=Undefined, **kwargs):
"""Display chart in Jupyter notebook or JupyterLab
Parameters are passed as options to vega-embed within supported frontends.
See https://github.com/vega/vega-embed#options for details.
Parameters
----------
renderer : string ('canvas' or 'svg')
The renderer to use
theme : string
The Vega theme name to use; see https://github.com/vega/vega-themes
actions : bool or dict
Specify whether action links ("Open In Vega Editor", etc.) are
included in the view.
**kwargs :
Additional parameters are also passed to vega-embed as options.
"""
from IPython.display import display
if renderer is not Undefined:
kwargs["renderer"] = renderer
if theme is not Undefined:
kwargs["theme"] = theme
if actions is not Undefined:
kwargs["actions"] = actions
if kwargs:
options = renderers.options.copy()
options["embed_options"] = options.get("embed_options", {}).copy()
options["embed_options"].update(kwargs)
with renderers.enable(**options):
display(self)
else:
display(self)
@utils.deprecation.deprecated(message="serve() is deprecated. Use show() instead.")
def serve(
self,
ip="127.0.0.1",
port=8888,
n_retries=50,
files=None,
jupyter_warning=True,
open_browser=True,
http_server=None,
**kwargs,
):
"""Open a browser window and display a rendering of the chart
Parameters
----------
html : string
HTML to serve
ip : string (default = '127.0.0.1')
ip address at which the HTML will be served.
port : int (default = 8888)
the port at which to serve the HTML
n_retries : int (default = 50)
the number of nearby ports to search if the specified port
is already in use.
files : dictionary (optional)
dictionary of extra content to serve
jupyter_warning : bool (optional)
if True (default), then print a warning if this is used
within the Jupyter notebook
open_browser : bool (optional)
if True (default), then open a web browser to the given HTML
http_server : class (optional)
optionally specify an HTTPServer class to use for showing the
figure. The default is Python's basic HTTPServer.
**kwargs :
additional keyword arguments passed to the save() method
"""
from ...utils.server import serve
html = io.StringIO()
self.save(html, format="html", **kwargs)
html.seek(0)
serve(
html.read(),
ip=ip,
port=port,
n_retries=n_retries,
files=files,
jupyter_warning=jupyter_warning,
open_browser=open_browser,
http_server=http_server,
)
def show(self, embed_opt=None, open_browser=None):
"""Show the chart in an external browser window.
This requires a recent version of the altair_viewer package.
Parameters
----------
embed_opt : dict (optional)
The Vega embed options that control the dispay of the chart.
open_browser : bool (optional)
Specify whether a browser window should be opened. If not specified,
a browser window will be opened only if the server is not already
connected to a browser.
"""
try:
import altair_viewer # type: ignore
except ImportError:
raise ValueError(
"show() method requires the altair_viewer package. "
"See http://github.com/altair-viz/altair_viewer"
)
altair_viewer.show(self, embed_opt=embed_opt, open_browser=open_browser)
@utils.use_signature(core.Resolve)
def _set_resolve(self, **kwargs):
"""Copy the chart and update the resolve property with kwargs"""
if not hasattr(self, "resolve"):
raise ValueError(
"{} object has no attribute " "'resolve'".format(self.__class__)
)
copy = self.copy(deep=["resolve"])
if copy.resolve is Undefined:
copy.resolve = core.Resolve()
for key, val in kwargs.items():
copy.resolve[key] = val
return copy
@utils.use_signature(core.AxisResolveMap)
def resolve_axis(self, *args, **kwargs):
return self._set_resolve(axis=core.AxisResolveMap(*args, **kwargs))
@utils.use_signature(core.LegendResolveMap)
def resolve_legend(self, *args, **kwargs):
return self._set_resolve(legend=core.LegendResolveMap(*args, **kwargs))
@utils.use_signature(core.ScaleResolveMap)
def resolve_scale(self, *args, **kwargs):
return self._set_resolve(scale=core.ScaleResolveMap(*args, **kwargs))
class _EncodingMixin(object):
@utils.use_signature(core.FacetedEncoding)
def encode(self, *args, **kwargs):
# Convert args to kwargs based on their types.
kwargs = utils.infer_encoding_types(args, kwargs, channels)
# get a copy of the dict representation of the previous encoding
copy = self.copy(deep=["encoding"])
encoding = copy._get("encoding", {})
if isinstance(encoding, core.VegaLiteSchema):
encoding = {k: v for k, v in encoding._kwds.items() if v is not Undefined}
# update with the new encodings, and apply them to the copy
encoding.update(kwargs)
copy.encoding = core.FacetedEncoding(**encoding)
return copy
def facet(
self,
facet=Undefined,
row=Undefined,
column=Undefined,
data=Undefined,
columns=Undefined,
**kwargs,
):
"""Create a facet chart from the current chart.
Faceted charts require data to be specified at the top level; if data
is not specified, the data from the current chart will be used at the
top level.
Parameters
----------
facet : string or alt.Facet (optional)
The data column to use as an encoding for a wrapped facet.
If specified, then neither row nor column may be specified.
column : string or alt.Column (optional)
The data column to use as an encoding for a column facet.
May be combined with row argument, but not with facet argument.
row : string or alt.Column (optional)
The data column to use as an encoding for a row facet.
May be combined with column argument, but not with facet argument.
data : string or dataframe (optional)
The dataset to use for faceting. If not supplied, then data must
be specified in the top-level chart that calls this method.
columns : integer
the maximum number of columns for a wrapped facet.
Returns
-------
self :
for chaining
"""
facet_specified = facet is not Undefined
rowcol_specified = row is not Undefined or column is not Undefined
if facet_specified and rowcol_specified:
raise ValueError(
"facet argument cannot be combined with row/column argument."
)
if data is Undefined:
if self.data is Undefined:
raise ValueError(
"Facet charts require data to be specified at the top level."
)
self = self.copy(deep=False)
data, self.data = self.data, Undefined
if facet_specified:
if isinstance(facet, str):
facet = channels.Facet(facet)
else:
facet = FacetMapping(row=row, column=column)
return FacetChart(spec=self, facet=facet, data=data, columns=columns, **kwargs)
class Chart(
TopLevelMixin, _EncodingMixin, mixins.MarkMethodMixin, core.TopLevelUnitSpec
):
"""Create a basic Altair/Vega-Lite chart.
Although it is possible to set all Chart properties as constructor attributes,
it is more idiomatic to use methods such as ``mark_point()``, ``encode()``,
``transform_filter()``, ``properties()``, etc. See Altair's documentation
for details and examples: http://altair-viz.github.io/.
Attributes
----------
data : Data
An object describing the data source
mark : AnyMark
A string describing the mark type (one of `"bar"`, `"circle"`, `"square"`, `"tick"`,
`"line"`, * `"area"`, `"point"`, `"rule"`, `"geoshape"`, and `"text"`) or a
MarkDef object.
encoding : FacetedEncoding
A key-value mapping between encoding channels and definition of fields.
autosize : anyOf(AutosizeType, AutoSizeParams)
Sets how the visualization size should be determined. If a string, should be one of
`"pad"`, `"fit"` or `"none"`. Object values can additionally specify parameters for
content sizing and automatic resizing. `"fit"` is only supported for single and
layered views that don't use `rangeStep`. __Default value__: `pad`
background : string
CSS color property to use as the background of visualization.
**Default value:** none (transparent)
config : Config
Vega-Lite configuration object. This property can only be defined at the top-level
of a specification.
description : string
Description of this mark for commenting purpose.
height : float
The height of a visualization.
name : string
Name of the visualization for later reference.
padding : Padding
The default visualization padding, in pixels, from the edge of the visualization
canvas to the data rectangle. If a number, specifies padding for all sides. If an
object, the value should have the format `{"left": 5, "top": 5, "right": 5,
"bottom": 5}` to specify padding for each side of the visualization. __Default
value__: `5`
projection : Projection
An object defining properties of geographic projection. Works with `"geoshape"`
marks and `"point"` or `"line"` marks that have a channel (one or more of `"X"`,
`"X2"`, `"Y"`, `"Y2"`) with type `"latitude"`, or `"longitude"`.
selection : Mapping(required=[])
A key-value mapping between selection names and definitions.
title : anyOf(string, TitleParams)
Title for the plot.
transform : List(Transform)
An array of data transformations such as filter and new field calculation.
width : float
The width of a visualization.
"""
def __init__(
self,
data=Undefined,
encoding=Undefined,
mark=Undefined,
width=Undefined,
height=Undefined,
**kwargs,
):
super(Chart, self).__init__(
data=data,
encoding=encoding,
mark=mark,
width=width,
height=height,
**kwargs,
)
@classmethod
def from_dict(cls, dct, validate=True):
"""Construct class from a dictionary representation
Parameters
----------
dct : dictionary
The dict from which to construct the class
validate : boolean
If True (default), then validate the input against the schema.
Returns
-------
obj : Chart object
The wrapped schema
Raises
------
jsonschema.ValidationError :
if validate=True and dct does not conform to the schema
"""
for class_ in TopLevelMixin.__subclasses__():
if class_ is Chart:
class_ = super(Chart, cls)
try:
return class_.from_dict(dct, validate=validate)
except jsonschema.ValidationError:
pass
# As a last resort, try using the Root vegalite object
return core.Root.from_dict(dct, validate)
def to_dict(self, *args, **kwargs):
"""Convert the chart to a dictionary suitable for JSON export."""
context = kwargs.get("context", {})
if self.data is Undefined and "data" not in context:
# No data specified here or in parent: inject empty data
# for easier specification of datum encodings.
copy = self.copy(deep=False)
copy.data = core.InlineData(values=[{}])
return super(Chart, copy).to_dict(*args, **kwargs)
return super().to_dict(*args, **kwargs)
def add_selection(self, *selections):
"""Add one or more selections to the chart."""
if not selections:
return self
copy = self.copy(deep=["selection"])
if copy.selection is Undefined:
copy.selection = {}
for s in selections:
copy.selection[s.name] = s.selection
return copy
def interactive(self, name=None, bind_x=True, bind_y=True):
"""Make chart axes scales interactive
Parameters
----------
name : string
The selection name to use for the axes scales. This name should be
unique among all selections within the chart.
bind_x : boolean, default True
If true, then bind the interactive scales to the x-axis
bind_y : boolean, default True
If true, then bind the interactive scales to the y-axis
Returns
-------
chart :
copy of self, with interactive axes added
"""
encodings = []
if bind_x:
encodings.append("x")
if bind_y:
encodings.append("y")
return self.add_selection(
selection_interval(bind="scales", encodings=encodings)
)
def _check_if_valid_subspec(spec, classname):
"""Check if the spec is a valid sub-spec.
If it is not, then raise a ValueError
"""
err = (
'Objects with "{0}" attribute cannot be used within {1}. '
"Consider defining the {0} attribute in the {1} object instead."
)
if not isinstance(spec, (core.SchemaBase, dict)):
raise ValueError("Only chart objects can be used in {0}.".format(classname))
for attr in TOPLEVEL_ONLY_KEYS:
if isinstance(spec, core.SchemaBase):
val = getattr(spec, attr, Undefined)
else:
val = spec.get(attr, Undefined)
if val is not Undefined:
raise ValueError(err.format(attr, classname))
def _check_if_can_be_layered(spec):
"""Check if the spec can be layered."""
def _get(spec, attr):
if isinstance(spec, core.SchemaBase):
return spec._get(attr)
else:
return spec.get(attr, Undefined)
encoding = _get(spec, "encoding")
if encoding is not Undefined:
for channel in ["row", "column", "facet"]:
if _get(encoding, channel) is not Undefined:
raise ValueError("Faceted charts cannot be layered.")
if isinstance(spec, (Chart, LayerChart)):
return
if not isinstance(spec, (core.SchemaBase, dict)):
raise ValueError("Only chart objects can be layered.")
if _get(spec, "facet") is not Undefined:
raise ValueError("Faceted charts cannot be layered.")
if isinstance(spec, FacetChart) or _get(spec, "facet") is not Undefined:
raise ValueError("Faceted charts cannot be layered.")
if isinstance(spec, RepeatChart) or _get(spec, "repeat") is not Undefined:
raise ValueError("Repeat charts cannot be layered.")
if isinstance(spec, ConcatChart) or _get(spec, "concat") is not Undefined:
raise ValueError("Concatenated charts cannot be layered.")
if isinstance(spec, HConcatChart) or _get(spec, "hconcat") is not Undefined:
raise ValueError("Concatenated charts cannot be layered.")
if isinstance(spec, VConcatChart) or _get(spec, "vconcat") is not Undefined:
raise ValueError("Concatenated charts cannot be layered.")
@utils.use_signature(core.TopLevelRepeatSpec)
class RepeatChart(TopLevelMixin, core.TopLevelRepeatSpec):
"""A chart repeated across rows and columns with small changes"""
# Because TopLevelRepeatSpec is defined as a union as of Vega-Lite schema 4.9,
# we set the arguments explicitly here.
# TODO: Should we instead use tools/schemapi/codegen._get_args?
def __init__(
self,
repeat=Undefined,
spec=Undefined,
align=Undefined,
autosize=Undefined,
background=Undefined,
bounds=Undefined,
center=Undefined,
columns=Undefined,
config=Undefined,
data=Undefined,
datasets=Undefined,
description=Undefined,
name=Undefined,
padding=Undefined,
params=Undefined,
resolve=Undefined,
spacing=Undefined,
title=Undefined,
transform=Undefined,
usermeta=Undefined,
**kwds,
):
_check_if_valid_subspec(spec, "RepeatChart")
super(RepeatChart, self).__init__(
repeat=repeat,
spec=spec,
align=align,
autosize=autosize,
background=background,
bounds=bounds,
center=center,
columns=columns,
config=config,
data=data,
datasets=datasets,
description=description,
name=name,
padding=padding,
params=params,
resolve=resolve,
spacing=spacing,
title=title,
transform=transform,
usermeta=usermeta,
**kwds,
)
def interactive(self, name=None, bind_x=True, bind_y=True):
"""Make chart axes scales interactive
Parameters
----------
name : string
The selection name to use for the axes scales. This name should be
unique among all selections within the chart.
bind_x : boolean, default True
If true, then bind the interactive scales to the x-axis
bind_y : boolean, default True
If true, then bind the interactive scales to the y-axis
Returns
-------
chart :
copy of self, with interactive axes added
"""
copy = self.copy(deep=False)
copy.spec = copy.spec.interactive(name=name, bind_x=bind_x, bind_y=bind_y)
return copy
def add_selection(self, *selections):
"""Add one or more selections to the chart."""
if not selections or self.spec is Undefined:
return self
copy = self.copy()
copy.spec = copy.spec.add_selection(*selections)
return copy
def repeat(repeater="repeat"):
"""Tie a channel to the row or column within a repeated chart
The output of this should be passed to the ``field`` attribute of
a channel.
Parameters
----------
repeater : {'row'|'column'|'repeat'|'layer'}
The repeater to tie the field to. Default is 'repeat'.
Returns
-------
repeat : RepeatRef object
"""
if repeater not in ["row", "column", "repeat", "layer"]:
raise ValueError("repeater must be one of ['row', 'column', 'repeat', 'layer']")
return core.RepeatRef(repeat=repeater)
@utils.use_signature(core.TopLevelNormalizedConcatSpecGenericSpec)
class ConcatChart(TopLevelMixin, core.TopLevelNormalizedConcatSpecGenericSpec):
"""A chart with horizontally-concatenated facets"""
def __init__(self, data=Undefined, concat=(), columns=Undefined, **kwargs):
# TODO: move common data to top level?
for spec in concat:
_check_if_valid_subspec(spec, "ConcatChart")
super(ConcatChart, self).__init__(
data=data, concat=list(concat), columns=columns, **kwargs
)
self.data, self.concat = _combine_subchart_data(self.data, self.concat)
def __ior__(self, other):
_check_if_valid_subspec(other, "ConcatChart")
self.concat.append(other)
self.data, self.concat = _combine_subchart_data(self.data, self.concat)
return self
def __or__(self, other):
copy = self.copy(deep=["concat"])
copy |= other
return copy
def add_selection(self, *selections):
"""Add one or more selections to all subcharts."""
if not selections or not self.concat:
return self
copy = self.copy()
copy.concat = [chart.add_selection(*selections) for chart in copy.concat]
return copy
def concat(*charts, **kwargs):
"""Concatenate charts horizontally"""
return ConcatChart(concat=charts, **kwargs)
@utils.use_signature(core.TopLevelNormalizedHConcatSpecGenericSpec)
class HConcatChart(TopLevelMixin, core.TopLevelNormalizedHConcatSpecGenericSpec):
"""A chart with horizontally-concatenated facets"""
def __init__(self, data=Undefined, hconcat=(), **kwargs):
# TODO: move common data to top level?
for spec in hconcat:
_check_if_valid_subspec(spec, "HConcatChart")
super(HConcatChart, self).__init__(data=data, hconcat=list(hconcat), **kwargs)
self.data, self.hconcat = _combine_subchart_data(self.data, self.hconcat)
def __ior__(self, other):
_check_if_valid_subspec(other, "HConcatChart")
self.hconcat.append(other)
self.data, self.hconcat = _combine_subchart_data(self.data, self.hconcat)
return self
def __or__(self, other):
copy = self.copy(deep=["hconcat"])
copy |= other
return copy
def add_selection(self, *selections):
"""Add one or more selections to all subcharts."""
if not selections or not self.hconcat:
return self
copy = self.copy()
copy.hconcat = [chart.add_selection(*selections) for chart in copy.hconcat]
return copy
def hconcat(*charts, **kwargs):
"""Concatenate charts horizontally"""
return HConcatChart(hconcat=charts, **kwargs)
@utils.use_signature(core.TopLevelNormalizedVConcatSpecGenericSpec)
class VConcatChart(TopLevelMixin, core.TopLevelNormalizedVConcatSpecGenericSpec):
"""A chart with vertically-concatenated facets"""
def __init__(self, data=Undefined, vconcat=(), **kwargs):
# TODO: move common data to top level?
for spec in vconcat:
_check_if_valid_subspec(spec, "VConcatChart")
super(VConcatChart, self).__init__(data=data, vconcat=list(vconcat), **kwargs)
self.data, self.vconcat = _combine_subchart_data(self.data, self.vconcat)
def __iand__(self, other):
_check_if_valid_subspec(other, "VConcatChart")
self.vconcat.append(other)
self.data, self.vconcat = _combine_subchart_data(self.data, self.vconcat)
return self
def __and__(self, other):
copy = self.copy(deep=["vconcat"])
copy &= other
return copy
def add_selection(self, *selections):
"""Add one or more selections to all subcharts."""
if not selections or not self.vconcat:
return self
copy = self.copy()
copy.vconcat = [chart.add_selection(*selections) for chart in copy.vconcat]
return copy
def vconcat(*charts, **kwargs):
"""Concatenate charts vertically"""
return VConcatChart(vconcat=charts, **kwargs)
@utils.use_signature(core.TopLevelLayerSpec)
class LayerChart(TopLevelMixin, _EncodingMixin, core.TopLevelLayerSpec):
"""A Chart with layers within a single panel"""
def __init__(self, data=Undefined, layer=(), **kwargs):
# TODO: move common data to top level?
# TODO: check for conflicting interaction
for spec in layer:
_check_if_valid_subspec(spec, "LayerChart")
_check_if_can_be_layered(spec)
super(LayerChart, self).__init__(data=data, layer=list(layer), **kwargs)
self.data, self.layer = _combine_subchart_data(self.data, self.layer)
def __iadd__(self, other):
_check_if_valid_subspec(other, "LayerChart")
_check_if_can_be_layered(other)
self.layer.append(other)
self.data, self.layer = _combine_subchart_data(self.data, self.layer)
return self
def __add__(self, other):
copy = self.copy(deep=["layer"])
copy += other
return copy
def add_layers(self, *layers):
copy = self.copy(deep=["layer"])
for layer in layers:
copy += layer
return copy
def interactive(self, name=None, bind_x=True, bind_y=True):
"""Make chart axes scales interactive
Parameters
----------
name : string
The selection name to use for the axes scales. This name should be
unique among all selections within the chart.
bind_x : boolean, default True
If true, then bind the interactive scales to the x-axis
bind_y : boolean, default True
If true, then bind the interactive scales to the y-axis
Returns
-------
chart :
copy of self, with interactive axes added
"""
if not self.layer:
raise ValueError(
"LayerChart: cannot call interactive() until a " "layer is defined"
)
copy = self.copy(deep=["layer"])
copy.layer[0] = copy.layer[0].interactive(
name=name, bind_x=bind_x, bind_y=bind_y
)
return copy
def add_selection(self, *selections):
"""Add one or more selections to all subcharts."""
if not selections or not self.layer:
return self
copy = self.copy()
copy.layer[0] = copy.layer[0].add_selection(*selections)
return copy
def layer(*charts, **kwargs):
"""layer multiple charts"""
return LayerChart(layer=charts, **kwargs)
@utils.use_signature(core.TopLevelFacetSpec)
class FacetChart(TopLevelMixin, core.TopLevelFacetSpec):
"""A Chart with layers within a single panel"""
def __init__(self, data=Undefined, spec=Undefined, facet=Undefined, **kwargs):
_check_if_valid_subspec(spec, "FacetChart")
super(FacetChart, self).__init__(data=data, spec=spec, facet=facet, **kwargs)
def interactive(self, name=None, bind_x=True, bind_y=True):
"""Make chart axes scales interactive
Parameters
----------
name : string
The selection name to use for the axes scales. This name should be
unique among all selections within the chart.
bind_x : boolean, default True
If true, then bind the interactive scales to the x-axis
bind_y : boolean, default True
If true, then bind the interactive scales to the y-axis
Returns
-------
chart :
copy of self, with interactive axes added
"""
copy = self.copy(deep=False)
copy.spec = copy.spec.interactive(name=name, bind_x=bind_x, bind_y=bind_y)
return copy
def add_selection(self, *selections):
"""Add one or more selections to the chart."""
if not selections or self.spec is Undefined:
return self
copy = self.copy()
copy.spec = copy.spec.add_selection(*selections)
return copy
def topo_feature(url, feature, **kwargs):
"""A convenience function for extracting features from a topojson url
Parameters
----------
url : string
An URL from which to load the data set.
feature : string
The name of the TopoJSON object set to convert to a GeoJSON feature collection. For
example, in a map of the world, there may be an object set named `"countries"`.
Using the feature property, we can extract this set and generate a GeoJSON feature
object for each country.
**kwargs :
additional keywords passed to TopoDataFormat
"""
return core.UrlData(
url=url, format=core.TopoDataFormat(type="topojson", feature=feature, **kwargs)
)
def _combine_subchart_data(data, subcharts):
def remove_data(subchart):
if subchart.data is not Undefined:
subchart = subchart.copy()
subchart.data = Undefined
return subchart
if not subcharts:
# No subcharts = nothing to do.
pass
elif data is Undefined:
# Top level has no data; all subchart data must
# be identical to proceed.
subdata = subcharts[0].data
if subdata is not Undefined and all(c.data is subdata for c in subcharts):
data = subdata
subcharts = [remove_data(c) for c in subcharts]
else:
# Top level has data; subchart data must be either
# undefined or identical to proceed.
if all(c.data is Undefined or c.data is data for c in subcharts):
subcharts = [remove_data(c) for c in subcharts]
return data, subcharts
@utils.use_signature(core.SequenceParams)
def sequence(start, stop=None, step=Undefined, as_=Undefined, **kwds):
"""Sequence generator."""
if stop is None:
start, stop = 0, start
params = core.SequenceParams(start=start, stop=stop, step=step, **{"as": as_})
return core.SequenceGenerator(sequence=params, **kwds)
@utils.use_signature(core.GraticuleParams)
def graticule(**kwds):
"""Graticule generator."""
if not kwds:
# graticule: True indicates default parameters
graticule = True
else:
graticule = core.GraticuleParams(**kwds)
return core.GraticuleGenerator(graticule=graticule)
def sphere():
"""Sphere generator."""
return core.SphereGenerator(sphere=True)
|