Spaces:
Running
Running
# | |
# ElGamal.py : ElGamal encryption/decryption and signatures | |
# | |
# Part of the Python Cryptography Toolkit | |
# | |
# Originally written by: A.M. Kuchling | |
# | |
# =================================================================== | |
# The contents of this file are dedicated to the public domain. To | |
# the extent that dedication to the public domain is not available, | |
# everyone is granted a worldwide, perpetual, royalty-free, | |
# non-exclusive license to exercise all rights associated with the | |
# contents of this file for any purpose whatsoever. | |
# No rights are reserved. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# =================================================================== | |
__all__ = ['generate', 'construct', 'ElGamalKey'] | |
from Crypto import Random | |
from Crypto.Math.Primality import ( generate_probable_safe_prime, | |
test_probable_prime, COMPOSITE ) | |
from Crypto.Math.Numbers import Integer | |
# Generate an ElGamal key with N bits | |
def generate(bits, randfunc): | |
"""Randomly generate a fresh, new ElGamal key. | |
The key will be safe for use for both encryption and signature | |
(although it should be used for **only one** purpose). | |
Args: | |
bits (int): | |
Key length, or size (in bits) of the modulus *p*. | |
The recommended value is 2048. | |
randfunc (callable): | |
Random number generation function; it should accept | |
a single integer *N* and return a string of random | |
*N* random bytes. | |
Return: | |
an :class:`ElGamalKey` object | |
""" | |
obj=ElGamalKey() | |
# Generate a safe prime p | |
# See Algorithm 4.86 in Handbook of Applied Cryptography | |
obj.p = generate_probable_safe_prime(exact_bits=bits, randfunc=randfunc) | |
q = (obj.p - 1) >> 1 | |
# Generate generator g | |
while 1: | |
# Choose a square residue; it will generate a cyclic group of order q. | |
obj.g = pow(Integer.random_range(min_inclusive=2, | |
max_exclusive=obj.p, | |
randfunc=randfunc), 2, obj.p) | |
# We must avoid g=2 because of Bleichenbacher's attack described | |
# in "Generating ElGamal signatures without knowning the secret key", | |
# 1996 | |
if obj.g in (1, 2): | |
continue | |
# Discard g if it divides p-1 because of the attack described | |
# in Note 11.67 (iii) in HAC | |
if (obj.p - 1) % obj.g == 0: | |
continue | |
# g^{-1} must not divide p-1 because of Khadir's attack | |
# described in "Conditions of the generator for forging ElGamal | |
# signature", 2011 | |
ginv = obj.g.inverse(obj.p) | |
if (obj.p - 1) % ginv == 0: | |
continue | |
# Found | |
break | |
# Generate private key x | |
obj.x = Integer.random_range(min_inclusive=2, | |
max_exclusive=obj.p-1, | |
randfunc=randfunc) | |
# Generate public key y | |
obj.y = pow(obj.g, obj.x, obj.p) | |
return obj | |
def construct(tup): | |
r"""Construct an ElGamal key from a tuple of valid ElGamal components. | |
The modulus *p* must be a prime. | |
The following conditions must apply: | |
.. math:: | |
\begin{align} | |
&1 < g < p-1 \\ | |
&g^{p-1} = 1 \text{ mod } 1 \\ | |
&1 < x < p-1 \\ | |
&g^x = y \text{ mod } p | |
\end{align} | |
Args: | |
tup (tuple): | |
A tuple with either 3 or 4 integers, | |
in the following order: | |
1. Modulus (*p*). | |
2. Generator (*g*). | |
3. Public key (*y*). | |
4. Private key (*x*). Optional. | |
Raises: | |
ValueError: when the key being imported fails the most basic ElGamal validity checks. | |
Returns: | |
an :class:`ElGamalKey` object | |
""" | |
obj=ElGamalKey() | |
if len(tup) not in [3,4]: | |
raise ValueError('argument for construct() wrong length') | |
for i in range(len(tup)): | |
field = obj._keydata[i] | |
setattr(obj, field, Integer(tup[i])) | |
fmt_error = test_probable_prime(obj.p) == COMPOSITE | |
fmt_error |= obj.g<=1 or obj.g>=obj.p | |
fmt_error |= pow(obj.g, obj.p-1, obj.p)!=1 | |
fmt_error |= obj.y<1 or obj.y>=obj.p | |
if len(tup)==4: | |
fmt_error |= obj.x<=1 or obj.x>=obj.p | |
fmt_error |= pow(obj.g, obj.x, obj.p)!=obj.y | |
if fmt_error: | |
raise ValueError("Invalid ElGamal key components") | |
return obj | |
class ElGamalKey(object): | |
r"""Class defining an ElGamal key. | |
Do not instantiate directly. | |
Use :func:`generate` or :func:`construct` instead. | |
:ivar p: Modulus | |
:vartype d: integer | |
:ivar g: Generator | |
:vartype e: integer | |
:ivar y: Public key component | |
:vartype y: integer | |
:ivar x: Private key component | |
:vartype x: integer | |
""" | |
#: Dictionary of ElGamal parameters. | |
#: | |
#: A public key will only have the following entries: | |
#: | |
#: - **y**, the public key. | |
#: - **g**, the generator. | |
#: - **p**, the modulus. | |
#: | |
#: A private key will also have: | |
#: | |
#: - **x**, the private key. | |
_keydata=['p', 'g', 'y', 'x'] | |
def __init__(self, randfunc=None): | |
if randfunc is None: | |
randfunc = Random.new().read | |
self._randfunc = randfunc | |
def _encrypt(self, M, K): | |
a=pow(self.g, K, self.p) | |
b=( pow(self.y, K, self.p)*M ) % self.p | |
return [int(a), int(b)] | |
def _decrypt(self, M): | |
if (not hasattr(self, 'x')): | |
raise TypeError('Private key not available in this object') | |
r = Integer.random_range(min_inclusive=2, | |
max_exclusive=self.p-1, | |
randfunc=self._randfunc) | |
a_blind = (pow(self.g, r, self.p) * M[0]) % self.p | |
ax=pow(a_blind, self.x, self.p) | |
plaintext_blind = (ax.inverse(self.p) * M[1] ) % self.p | |
plaintext = (plaintext_blind * pow(self.y, r, self.p)) % self.p | |
return int(plaintext) | |
def _sign(self, M, K): | |
if (not hasattr(self, 'x')): | |
raise TypeError('Private key not available in this object') | |
p1=self.p-1 | |
K = Integer(K) | |
if (K.gcd(p1)!=1): | |
raise ValueError('Bad K value: GCD(K,p-1)!=1') | |
a=pow(self.g, K, self.p) | |
t=(Integer(M)-self.x*a) % p1 | |
while t<0: t=t+p1 | |
b=(t*K.inverse(p1)) % p1 | |
return [int(a), int(b)] | |
def _verify(self, M, sig): | |
sig = [Integer(x) for x in sig] | |
if sig[0]<1 or sig[0]>self.p-1: | |
return 0 | |
v1=pow(self.y, sig[0], self.p) | |
v1=(v1*pow(sig[0], sig[1], self.p)) % self.p | |
v2=pow(self.g, M, self.p) | |
if v1==v2: | |
return 1 | |
return 0 | |
def has_private(self): | |
"""Whether this is an ElGamal private key""" | |
if hasattr(self, 'x'): | |
return 1 | |
else: | |
return 0 | |
def can_encrypt(self): | |
return True | |
def can_sign(self): | |
return True | |
def publickey(self): | |
"""A matching ElGamal public key. | |
Returns: | |
a new :class:`ElGamalKey` object | |
""" | |
return construct((self.p, self.g, self.y)) | |
def __eq__(self, other): | |
if bool(self.has_private()) != bool(other.has_private()): | |
return False | |
result = True | |
for comp in self._keydata: | |
result = result and (getattr(self.key, comp, None) == | |
getattr(other.key, comp, None)) | |
return result | |
def __ne__(self, other): | |
return not self.__eq__(other) | |
def __getstate__(self): | |
# ElGamal key is not pickable | |
from pickle import PicklingError | |
raise PicklingError | |
# Methods defined in PyCrypto that we don't support anymore | |
def sign(self, M, K): | |
raise NotImplementedError | |
def verify(self, M, signature): | |
raise NotImplementedError | |
def encrypt(self, plaintext, K): | |
raise NotImplementedError | |
def decrypt(self, ciphertext): | |
raise NotImplementedError | |
def blind(self, M, B): | |
raise NotImplementedError | |
def unblind(self, M, B): | |
raise NotImplementedError | |
def size(self): | |
raise NotImplementedError | |