Spaces:
Running
Running
import pytest | |
import warnings | |
import json | |
import numpy as np | |
import pandas as pd | |
from .. import infer_vegalite_type, sanitize_dataframe | |
def test_infer_vegalite_type(): | |
def _check(arr, typ): | |
assert infer_vegalite_type(arr) == typ | |
_check(np.arange(5, dtype=float), "quantitative") | |
_check(np.arange(5, dtype=int), "quantitative") | |
_check(np.zeros(5, dtype=bool), "nominal") | |
_check(pd.date_range("2012", "2013"), "temporal") | |
_check(pd.timedelta_range(365, periods=12), "temporal") | |
nulled = pd.Series(np.random.randint(10, size=10)) | |
nulled[0] = None | |
_check(nulled, "quantitative") | |
_check(["a", "b", "c"], "nominal") | |
if hasattr(pytest, "warns"): # added in pytest 2.8 | |
with pytest.warns(UserWarning): | |
_check([], "nominal") | |
else: | |
with warnings.catch_warnings(): | |
warnings.filterwarnings("ignore") | |
_check([], "nominal") | |
def test_sanitize_dataframe(): | |
# create a dataframe with various types | |
df = pd.DataFrame( | |
{ | |
"s": list("abcde"), | |
"f": np.arange(5, dtype=float), | |
"i": np.arange(5, dtype=int), | |
"b": np.array([True, False, True, True, False]), | |
"d": pd.date_range("2012-01-01", periods=5, freq="H"), | |
"c": pd.Series(list("ababc"), dtype="category"), | |
"c2": pd.Series([1, "A", 2.5, "B", None], dtype="category"), | |
"o": pd.Series([np.array(i) for i in range(5)]), | |
"p": pd.date_range("2012-01-01", periods=5, freq="H").tz_localize("UTC"), | |
} | |
) | |
# add some nulls | |
df.iloc[0, df.columns.get_loc("s")] = None | |
df.iloc[0, df.columns.get_loc("f")] = np.nan | |
df.iloc[0, df.columns.get_loc("d")] = pd.NaT | |
df.iloc[0, df.columns.get_loc("o")] = np.array(np.nan) | |
# JSON serialize. This will fail on non-sanitized dataframes | |
print(df[["s", "c2"]]) | |
df_clean = sanitize_dataframe(df) | |
print(df_clean[["s", "c2"]]) | |
print(df_clean[["s", "c2"]].to_dict()) | |
s = json.dumps(df_clean.to_dict(orient="records")) | |
print(s) | |
# Re-construct pandas dataframe | |
df2 = pd.read_json(s) | |
# Re-order the columns to match df | |
df2 = df2[df.columns] | |
# Re-apply original types | |
for col in df: | |
if str(df[col].dtype).startswith("datetime"): | |
# astype(datetime) introduces time-zone issues: | |
# to_datetime() does not. | |
utc = isinstance(df[col].dtype, pd.core.dtypes.dtypes.DatetimeTZDtype) | |
df2[col] = pd.to_datetime(df2[col], utc=utc) | |
else: | |
df2[col] = df2[col].astype(df[col].dtype) | |
# pandas doesn't properly recognize np.array(np.nan), so change it here | |
df.iloc[0, df.columns.get_loc("o")] = np.nan | |
assert df.equals(df2) | |
def test_sanitize_dataframe_colnames(): | |
df = pd.DataFrame(np.arange(12).reshape(4, 3)) | |
# Test that RangeIndex is converted to strings | |
df = sanitize_dataframe(df) | |
assert [isinstance(col, str) for col in df.columns] | |
# Test that non-string columns result in an error | |
df.columns = [4, "foo", "bar"] | |
with pytest.raises(ValueError) as err: | |
sanitize_dataframe(df) | |
assert str(err.value).startswith("Dataframe contains invalid column name: 4.") | |
def test_sanitize_dataframe_timedelta(): | |
df = pd.DataFrame({"r": pd.timedelta_range(start="1 day", periods=4)}) | |
with pytest.raises(ValueError) as err: | |
sanitize_dataframe(df) | |
assert str(err.value).startswith('Field "r" has type "timedelta') | |
def test_sanitize_dataframe_infs(): | |
df = pd.DataFrame({"x": [0, 1, 2, np.inf, -np.inf, np.nan]}) | |
df_clean = sanitize_dataframe(df) | |
assert list(df_clean.dtypes) == [object] | |
assert list(df_clean["x"]) == [0, 1, 2, None, None, None] | |
def test_sanitize_nullable_integers(): | |
df = pd.DataFrame( | |
{ | |
"int_np": [1, 2, 3, 4, 5], | |
"int64": pd.Series([1, 2, 3, None, 5], dtype="UInt8"), | |
"int64_nan": pd.Series([1, 2, 3, float("nan"), 5], dtype="Int64"), | |
"float": [1.0, 2.0, 3.0, 4, 5.0], | |
"float_null": [1, 2, None, 4, 5], | |
"float_inf": [1, 2, None, 4, (float("inf"))], | |
} | |
) | |
df_clean = sanitize_dataframe(df) | |
assert {col.dtype.name for _, col in df_clean.iteritems()} == {"object"} | |
result_python = {col_name: list(col) for col_name, col in df_clean.iteritems()} | |
assert result_python == { | |
"int_np": [1, 2, 3, 4, 5], | |
"int64": [1, 2, 3, None, 5], | |
"int64_nan": [1, 2, 3, None, 5], | |
"float": [1.0, 2.0, 3.0, 4.0, 5.0], | |
"float_null": [1.0, 2.0, None, 4.0, 5.0], | |
"float_inf": [1.0, 2.0, None, 4.0, None], | |
} | |
def test_sanitize_string_dtype(): | |
df = pd.DataFrame( | |
{ | |
"string_object": ["a", "b", "c", "d"], | |
"string_string": pd.array(["a", "b", "c", "d"], dtype="string"), | |
"string_object_null": ["a", "b", None, "d"], | |
"string_string_null": pd.array(["a", "b", None, "d"], dtype="string"), | |
} | |
) | |
df_clean = sanitize_dataframe(df) | |
assert {col.dtype.name for _, col in df_clean.iteritems()} == {"object"} | |
result_python = {col_name: list(col) for col_name, col in df_clean.iteritems()} | |
assert result_python == { | |
"string_object": ["a", "b", "c", "d"], | |
"string_string": ["a", "b", "c", "d"], | |
"string_object_null": ["a", "b", None, "d"], | |
"string_string_null": ["a", "b", None, "d"], | |
} | |
def test_sanitize_boolean_dtype(): | |
df = pd.DataFrame( | |
{ | |
"bool_none": pd.array([True, False, None], dtype="boolean"), | |
"none": pd.array([None, None, None], dtype="boolean"), | |
"bool": pd.array([True, False, True], dtype="boolean"), | |
} | |
) | |
df_clean = sanitize_dataframe(df) | |
assert {col.dtype.name for _, col in df_clean.iteritems()} == {"object"} | |
result_python = {col_name: list(col) for col_name, col in df_clean.iteritems()} | |
assert result_python == { | |
"bool_none": [True, False, None], | |
"none": [None, None, None], | |
"bool": [True, False, True], | |
} | |