Spaces:
Running
Running
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
MODEL_NAME = "bigcode/starcoderbase-3b" | |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
device = "cpu" | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) | |
# Ensure the tokenizer has a pad token set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
token=HF_TOKEN, | |
torch_dtype=torch.float32, # Ensure compatibility with CPU | |
trust_remote_code=True | |
).to(device) | |
def generate_code(prompt: str, max_tokens: int = 256): | |
formatted_prompt = f"{prompt}\n### Code:\n" # Ensure the model understands it's code | |
inputs = tokenizer( | |
formatted_prompt, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=512 # Explicit max length to prevent issues | |
).to(device) | |
output = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
pad_token_id=tokenizer.pad_token_id, | |
do_sample=True, # Enable randomness for better outputs | |
top_p=0.95, # Nucleus sampling to improve generation | |
temperature=0.7 # Control creativity | |
) | |
generated_code = tokenizer.decode(output[0], skip_special_tokens=True) | |
# Clean the output: remove the repeated prompt at the start | |
if generated_code.startswith(formatted_prompt): | |
generated_code = generated_code[len(formatted_prompt):] | |
return generated_code.strip() | |