import os from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL_NAME = "bigcode/starcoderbase-3b" HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN") device = "cpu" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) # Ensure the tokenizer has a pad token set if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Set pad_token to eos_token model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, token=HF_TOKEN, torch_dtype=torch.float32, # Ensure compatibility with CPU trust_remote_code=True ).to(device) def generate_code(prompt: str, max_tokens: int = 256): formatted_prompt = f"{prompt}\n### Code:\n" # Ensure the model understands it's code inputs = tokenizer( formatted_prompt, return_tensors="pt", padding=True, truncation=True, max_length=512 # Explicit max length to prevent issues ).to(device) output = model.generate( **inputs, max_new_tokens=max_tokens, pad_token_id=tokenizer.pad_token_id, do_sample=True, # Enable randomness for better outputs top_p=0.95, # Nucleus sampling to improve generation temperature=0.7 # Control creativity ) generated_code = tokenizer.decode(output[0], skip_special_tokens=True) # Clean the output: remove the repeated prompt at the start if generated_code.startswith(formatted_prompt): generated_code = generated_code[len(formatted_prompt):] return generated_code.strip()