File size: 69,152 Bytes
4983aaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\layers\\convolutional\\base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
" super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n",
"WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n",
"WARNING:absl:Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 313ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 35ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 26ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 30ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 24ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 43ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 23ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 54ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 16ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 21ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 17ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 18ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 20ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 19ms/step\n",
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 22ms/step\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[2], line 41\u001b[0m\n\u001b[0;32m 38\u001b[0m face_image \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mvstack([face_image])\n\u001b[0;32m 40\u001b[0m \u001b[38;5;66;03m# Predict emotion using the loaded model\u001b[39;00m\n\u001b[1;32m---> 41\u001b[0m predictions \u001b[38;5;241m=\u001b[39m \u001b[43mmodel_best\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mface_image\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 42\u001b[0m emotion_label \u001b[38;5;241m=\u001b[39m class_names[np\u001b[38;5;241m.\u001b[39margmax(predictions)]\n\u001b[0;32m 44\u001b[0m \u001b[38;5;66;03m# Display the emotion label on the frame\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:117\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 115\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 116\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 118\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:448\u001b[0m, in \u001b[0;36mTensorFlowTrainer.predict\u001b[1;34m(self, x, batch_size, verbose, steps, callbacks)\u001b[0m\n\u001b[0;32m 443\u001b[0m \u001b[38;5;129m@traceback_utils\u001b[39m\u001b[38;5;241m.\u001b[39mfilter_traceback\n\u001b[0;32m 444\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpredict\u001b[39m(\n\u001b[0;32m 445\u001b[0m \u001b[38;5;28mself\u001b[39m, x, batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto\u001b[39m\u001b[38;5;124m\"\u001b[39m, steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, callbacks\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 446\u001b[0m ):\n\u001b[0;32m 447\u001b[0m \u001b[38;5;66;03m# Create an iterator that yields batches of input data.\u001b[39;00m\n\u001b[1;32m--> 448\u001b[0m epoch_iterator \u001b[38;5;241m=\u001b[39m \u001b[43mTFEpochIterator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 449\u001b[0m \u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 450\u001b[0m \u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 451\u001b[0m \u001b[43m \u001b[49m\u001b[43msteps_per_epoch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msteps\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 452\u001b[0m \u001b[43m \u001b[49m\u001b[43mshuffle\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 453\u001b[0m \u001b[43m \u001b[49m\u001b[43mdistribute_strategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdistribute_strategy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 454\u001b[0m \u001b[43m \u001b[49m\u001b[43msteps_per_execution\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msteps_per_execution\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 455\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 457\u001b[0m \u001b[38;5;66;03m# Container that configures and calls callbacks.\u001b[39;00m\n\u001b[0;32m 458\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(callbacks, callbacks_module\u001b[38;5;241m.\u001b[39mCallbackList):\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:666\u001b[0m, in \u001b[0;36mTFEpochIterator.__init__\u001b[1;34m(self, distribute_strategy, *args, **kwargs)\u001b[0m\n\u001b[0;32m 664\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 665\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_distribute_strategy \u001b[38;5;241m=\u001b[39m distribute_strategy\n\u001b[1;32m--> 666\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_iterator\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 667\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(dataset, tf\u001b[38;5;241m.\u001b[39mdistribute\u001b[38;5;241m.\u001b[39mDistributedDataset):\n\u001b[0;32m 668\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_distribute_strategy\u001b[38;5;241m.\u001b[39mexperimental_distribute_dataset(\n\u001b[0;32m 669\u001b[0m dataset\n\u001b[0;32m 670\u001b[0m )\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\backend\\tensorflow\\trainer.py:675\u001b[0m, in \u001b[0;36mTFEpochIterator._get_iterator\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 674\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_iterator\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m--> 675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata_adapter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_tf_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\keras\\src\\trainers\\data_adapters\\array_data_adapter.py:232\u001b[0m, in \u001b[0;36mArrayDataAdapter.get_tf_dataset\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 229\u001b[0m dataset \u001b[38;5;241m=\u001b[39m dataset\u001b[38;5;241m.\u001b[39mwith_options(options)\n\u001b[0;32m 230\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m dataset\n\u001b[1;32m--> 232\u001b[0m indices_dataset \u001b[38;5;241m=\u001b[39m \u001b[43mindices_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mflat_map\u001b[49m\u001b[43m(\u001b[49m\u001b[43mslice_batch_indices\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 233\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m shuffle \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbatch\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m 234\u001b[0m indices_dataset \u001b[38;5;241m=\u001b[39m indices_dataset\u001b[38;5;241m.\u001b[39mmap(tf\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mshuffle)\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\data\\ops\\dataset_ops.py:2389\u001b[0m, in \u001b[0;36mDatasetV2.flat_map\u001b[1;34m(self, map_func, name)\u001b[0m\n\u001b[0;32m 2385\u001b[0m \u001b[38;5;66;03m# Loaded lazily due to a circular dependency (dataset_ops -> flat_map_op ->\u001b[39;00m\n\u001b[0;32m 2386\u001b[0m \u001b[38;5;66;03m# dataset_ops).\u001b[39;00m\n\u001b[0;32m 2387\u001b[0m \u001b[38;5;66;03m# pylint: disable=g-import-not-at-top,protected-access\u001b[39;00m\n\u001b[0;32m 2388\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtensorflow\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpython\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdata\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mops\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m flat_map_op\n\u001b[1;32m-> 2389\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mflat_map_op\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_flat_map\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmap_func\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\data\\ops\\flat_map_op.py:24\u001b[0m, in \u001b[0;36m_flat_map\u001b[1;34m(input_dataset, map_func, name)\u001b[0m\n\u001b[0;32m 22\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_flat_map\u001b[39m(input_dataset, map_func, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m): \u001b[38;5;66;03m# pylint: disable=unused-private-name\u001b[39;00m\n\u001b[0;32m 23\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"See `Dataset.flat_map()` for details.\"\"\"\u001b[39;00m\n\u001b[1;32m---> 24\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_FlatMapDataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_dataset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmap_func\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\data\\ops\\flat_map_op.py:33\u001b[0m, in \u001b[0;36m_FlatMapDataset.__init__\u001b[1;34m(self, input_dataset, map_func, name)\u001b[0m\n\u001b[0;32m 30\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, input_dataset, map_func, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[0;32m 32\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_input_dataset \u001b[38;5;241m=\u001b[39m input_dataset\n\u001b[1;32m---> 33\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_map_func \u001b[38;5;241m=\u001b[39m \u001b[43mstructured_function\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mStructuredFunctionWrapper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 34\u001b[0m \u001b[43m \u001b[49m\u001b[43mmap_func\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_transformation_name\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_dataset\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 35\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_map_func\u001b[38;5;241m.\u001b[39moutput_structure, dataset_ops\u001b[38;5;241m.\u001b[39mDatasetSpec):\n\u001b[0;32m 36\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\n\u001b[0;32m 37\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe `map_func` argument must return a `Dataset` object. Got \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 38\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdataset_ops\u001b[38;5;241m.\u001b[39mget_type(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_map_func\u001b[38;5;241m.\u001b[39moutput_structure)\u001b[38;5;132;01m!r}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\data\\ops\\structured_function.py:265\u001b[0m, in \u001b[0;36mStructuredFunctionWrapper.__init__\u001b[1;34m(self, func, transformation_name, dataset, input_classes, input_shapes, input_types, input_structure, add_to_graph, use_legacy_function, defun_kwargs)\u001b[0m\n\u001b[0;32m 258\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 259\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEven though the `tf.config.experimental_run_functions_eagerly` \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 260\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moption is set, this option does not apply to tf.data functions. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 261\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTo force eager execution of tf.data functions, please use \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 262\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`tf.data.experimental.enable_debug_mode()`.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 263\u001b[0m fn_factory \u001b[38;5;241m=\u001b[39m trace_tf_function(defun_kwargs)\n\u001b[1;32m--> 265\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_function \u001b[38;5;241m=\u001b[39m \u001b[43mfn_factory\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 266\u001b[0m \u001b[38;5;66;03m# There is no graph to add in eager mode.\u001b[39;00m\n\u001b[0;32m 267\u001b[0m add_to_graph \u001b[38;5;241m&\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m context\u001b[38;5;241m.\u001b[39mexecuting_eagerly()\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:1251\u001b[0m, in \u001b[0;36mFunction.get_concrete_function\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1249\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_concrete_function\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m 1250\u001b[0m \u001b[38;5;66;03m# Implements PolymorphicFunction.get_concrete_function.\u001b[39;00m\n\u001b[1;32m-> 1251\u001b[0m concrete \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_concrete_function_garbage_collected\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1252\u001b[0m concrete\u001b[38;5;241m.\u001b[39m_garbage_collector\u001b[38;5;241m.\u001b[39mrelease() \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 1253\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m concrete\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:1221\u001b[0m, in \u001b[0;36mFunction._get_concrete_function_garbage_collected\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1219\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 1220\u001b[0m initializers \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m-> 1221\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_initialize\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madd_initializers_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minitializers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1222\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_initialize_uninitialized_variables(initializers)\n\u001b[0;32m 1224\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_created_variables:\n\u001b[0;32m 1225\u001b[0m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[0;32m 1226\u001b[0m \u001b[38;5;66;03m# version which is guaranteed to never create variables.\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\polymorphic_function.py:696\u001b[0m, in \u001b[0;36mFunction._initialize\u001b[1;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_variable_creation_config \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate_scoped_tracing_options(\n\u001b[0;32m 692\u001b[0m variable_capturing_scope,\n\u001b[0;32m 693\u001b[0m tracing_compilation\u001b[38;5;241m.\u001b[39mScopeType\u001b[38;5;241m.\u001b[39mVARIABLE_CREATION,\n\u001b[0;32m 694\u001b[0m )\n\u001b[0;32m 695\u001b[0m \u001b[38;5;66;03m# Force the definition of the function for these arguments\u001b[39;00m\n\u001b[1;32m--> 696\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_concrete_variable_creation_fn \u001b[38;5;241m=\u001b[39m \u001b[43mtracing_compilation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrace_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 697\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_variable_creation_config\u001b[49m\n\u001b[0;32m 698\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 700\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvalid_creator_scope\u001b[39m(\u001b[38;5;241m*\u001b[39munused_args, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39munused_kwds):\n\u001b[0;32m 701\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Disables variable creation.\"\"\"\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:178\u001b[0m, in \u001b[0;36mtrace_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 175\u001b[0m args \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39minput_signature\n\u001b[0;32m 176\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m--> 178\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_maybe_define_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 179\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 180\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mbind_graph_to_function:\n\u001b[0;32m 183\u001b[0m concrete_function\u001b[38;5;241m.\u001b[39m_garbage_collector\u001b[38;5;241m.\u001b[39mrelease() \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:283\u001b[0m, in \u001b[0;36m_maybe_define_function\u001b[1;34m(args, kwargs, tracing_options)\u001b[0m\n\u001b[0;32m 281\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 282\u001b[0m target_func_type \u001b[38;5;241m=\u001b[39m lookup_func_type\n\u001b[1;32m--> 283\u001b[0m concrete_function \u001b[38;5;241m=\u001b[39m \u001b[43m_create_concrete_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 284\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_func_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlookup_func_context\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\n\u001b[0;32m 285\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 287\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 288\u001b[0m tracing_options\u001b[38;5;241m.\u001b[39mfunction_cache\u001b[38;5;241m.\u001b[39madd(\n\u001b[0;32m 289\u001b[0m concrete_function, current_func_context\n\u001b[0;32m 290\u001b[0m )\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\eager\\polymorphic_function\\tracing_compilation.py:310\u001b[0m, in \u001b[0;36m_create_concrete_function\u001b[1;34m(function_type, type_context, func_graph, tracing_options)\u001b[0m\n\u001b[0;32m 303\u001b[0m placeholder_bound_args \u001b[38;5;241m=\u001b[39m function_type\u001b[38;5;241m.\u001b[39mplaceholder_arguments(\n\u001b[0;32m 304\u001b[0m placeholder_context\n\u001b[0;32m 305\u001b[0m )\n\u001b[0;32m 307\u001b[0m disable_acd \u001b[38;5;241m=\u001b[39m tracing_options\u001b[38;5;241m.\u001b[39mattributes \u001b[38;5;129;01mand\u001b[39;00m tracing_options\u001b[38;5;241m.\u001b[39mattributes\u001b[38;5;241m.\u001b[39mget(\n\u001b[0;32m 308\u001b[0m attributes_lib\u001b[38;5;241m.\u001b[39mDISABLE_ACD, \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 309\u001b[0m )\n\u001b[1;32m--> 310\u001b[0m traced_func_graph \u001b[38;5;241m=\u001b[39m \u001b[43mfunc_graph_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc_graph_from_py_func\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 311\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 312\u001b[0m \u001b[43m \u001b[49m\u001b[43mtracing_options\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpython_function\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 313\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 314\u001b[0m \u001b[43m \u001b[49m\u001b[43mplaceholder_bound_args\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 315\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 316\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 317\u001b[0m \u001b[43m \u001b[49m\u001b[43madd_control_dependencies\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdisable_acd\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 318\u001b[0m \u001b[43m \u001b[49m\u001b[43marg_names\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunction_type_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_arg_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunction_type\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 319\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_placeholders\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 320\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 322\u001b[0m transform\u001b[38;5;241m.\u001b[39mapply_func_graph_transforms(traced_func_graph)\n\u001b[0;32m 324\u001b[0m graph_capture_container \u001b[38;5;241m=\u001b[39m traced_func_graph\u001b[38;5;241m.\u001b[39mfunction_captures\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:987\u001b[0m, in \u001b[0;36mfunc_graph_from_py_func\u001b[1;34m(name, python_func, args, kwargs, signature, func_graph, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, create_placeholders)\u001b[0m\n\u001b[0;32m 984\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 985\u001b[0m deps_control_manager \u001b[38;5;241m=\u001b[39m ops\u001b[38;5;241m.\u001b[39mNullContextmanager()\n\u001b[1;32m--> 987\u001b[0m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mwith\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfunc_graph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_default\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdeps_control_manager\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mas\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdeps_ctx\u001b[49m\u001b[43m:\u001b[49m\n\u001b[0;32m 988\u001b[0m \u001b[43m \u001b[49m\u001b[43mcurrent_scope\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mvariable_scope\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_variable_scope\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 989\u001b[0m \u001b[43m \u001b[49m\u001b[43mdefault_use_resource\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mcurrent_scope\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43muse_resource\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\auto_control_deps.py:533\u001b[0m, in \u001b[0;36mAutomaticControlDependencies.__exit__\u001b[1;34m(self, unused_type, unused_value, unused_traceback)\u001b[0m\n\u001b[0;32m 526\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m r\u001b[38;5;241m.\u001b[39mgraph\u001b[38;5;241m.\u001b[39mbuilding_function:\n\u001b[0;32m 527\u001b[0m \u001b[38;5;66;03m# There may be many stateful ops in the graph. Adding them as\u001b[39;00m\n\u001b[0;32m 528\u001b[0m \u001b[38;5;66;03m# control inputs to each function output could create excessive\u001b[39;00m\n\u001b[0;32m 529\u001b[0m \u001b[38;5;66;03m# control edges in the graph. Thus we create an intermediate No-op to\u001b[39;00m\n\u001b[0;32m 530\u001b[0m \u001b[38;5;66;03m# chain the control dependencies between stateful ops and function\u001b[39;00m\n\u001b[0;32m 531\u001b[0m \u001b[38;5;66;03m# outputs.\u001b[39;00m\n\u001b[0;32m 532\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m idx \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m--> 533\u001b[0m control_output_op \u001b[38;5;241m=\u001b[39m \u001b[43mcontrol_flow_ops\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mno_op\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 534\u001b[0m control_output_op\u001b[38;5;241m.\u001b[39m_add_control_inputs(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mops_which_must_run)\n\u001b[0;32m 535\u001b[0m updated_ops_which_must_run \u001b[38;5;241m=\u001b[39m [control_output_op]\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\ops\\gen_control_flow_ops.py:531\u001b[0m, in \u001b[0;36mno_op\u001b[1;34m(name)\u001b[0m\n\u001b[0;32m 529\u001b[0m \u001b[38;5;66;03m# Add nodes to the TensorFlow graph.\u001b[39;00m\n\u001b[0;32m 530\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 531\u001b[0m _, _, _op, _outputs \u001b[38;5;241m=\u001b[39m \u001b[43m_op_def_library\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply_op_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 532\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mNoOp\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 533\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m (\u001b[38;5;167;01mTypeError\u001b[39;00m, \u001b[38;5;167;01mValueError\u001b[39;00m):\n\u001b[0;32m 534\u001b[0m _result \u001b[38;5;241m=\u001b[39m _dispatch\u001b[38;5;241m.\u001b[39mdispatch(\n\u001b[0;32m 535\u001b[0m no_op, (), \u001b[38;5;28mdict\u001b[39m(name\u001b[38;5;241m=\u001b[39mname)\n\u001b[0;32m 536\u001b[0m )\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\op_def_library.py:796\u001b[0m, in \u001b[0;36m_apply_op_helper\u001b[1;34m(op_type_name, name, **keywords)\u001b[0m\n\u001b[0;32m 791\u001b[0m must_colocate_inputs \u001b[38;5;241m=\u001b[39m [val \u001b[38;5;28;01mfor\u001b[39;00m arg, val \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(op_def\u001b[38;5;241m.\u001b[39minput_arg, inputs)\n\u001b[0;32m 792\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mis_ref]\n\u001b[0;32m 793\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m _MaybeColocateWith(must_colocate_inputs):\n\u001b[0;32m 794\u001b[0m \u001b[38;5;66;03m# Add Op to graph\u001b[39;00m\n\u001b[0;32m 795\u001b[0m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[1;32m--> 796\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43mg\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_op_internal\u001b[49m\u001b[43m(\u001b[49m\u001b[43mop_type_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtypes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m 797\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mscope\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 798\u001b[0m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattr_protos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 800\u001b[0m \u001b[38;5;66;03m# `outputs` is returned as a separate return value so that the output\u001b[39;00m\n\u001b[0;32m 801\u001b[0m \u001b[38;5;66;03m# tensors can the `op` per se can be decoupled so that the\u001b[39;00m\n\u001b[0;32m 802\u001b[0m \u001b[38;5;66;03m# `op_callbacks` can function properly. See framework/op_callbacks.py\u001b[39;00m\n\u001b[0;32m 803\u001b[0m \u001b[38;5;66;03m# for more details.\u001b[39;00m\n\u001b[0;32m 804\u001b[0m outputs \u001b[38;5;241m=\u001b[39m op\u001b[38;5;241m.\u001b[39moutputs\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\func_graph.py:670\u001b[0m, in \u001b[0;36mFuncGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m 668\u001b[0m inp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcapture(inp)\n\u001b[0;32m 669\u001b[0m captured_inputs\u001b[38;5;241m.\u001b[39mappend(inp)\n\u001b[1;32m--> 670\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_create_op_internal\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[0;32m 671\u001b[0m \u001b[43m \u001b[49m\u001b[43mop_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdtypes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompute_device\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:2701\u001b[0m, in \u001b[0;36mGraph._create_op_internal\u001b[1;34m(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)\u001b[0m\n\u001b[0;32m 2698\u001b[0m \u001b[38;5;66;03m# _create_op_helper mutates the new Operation. `_mutation_lock` ensures a\u001b[39;00m\n\u001b[0;32m 2699\u001b[0m \u001b[38;5;66;03m# Session.run call cannot occur between creating and mutating the op.\u001b[39;00m\n\u001b[0;32m 2700\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mutation_lock():\n\u001b[1;32m-> 2701\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mOperation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_node_def\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2702\u001b[0m \u001b[43m \u001b[49m\u001b[43mnode_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2703\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2704\u001b[0m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2705\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtypes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2706\u001b[0m \u001b[43m \u001b[49m\u001b[43mcontrol_inputs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcontrol_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2707\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43minput_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2708\u001b[0m \u001b[43m \u001b[49m\u001b[43moriginal_op\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_default_original_op\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2709\u001b[0m \u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2710\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 2711\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_op_helper(ret, compute_device\u001b[38;5;241m=\u001b[39mcompute_device)\n\u001b[0;32m 2712\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:1196\u001b[0m, in \u001b[0;36mOperation.from_node_def\u001b[1;34m(***failed resolving arguments***)\u001b[0m\n\u001b[0;32m 1193\u001b[0m control_input_ops\u001b[38;5;241m.\u001b[39mappend(control_op)\n\u001b[0;32m 1195\u001b[0m \u001b[38;5;66;03m# Initialize c_op from node_def and other inputs\u001b[39;00m\n\u001b[1;32m-> 1196\u001b[0m c_op \u001b[38;5;241m=\u001b[39m \u001b[43m_create_c_op\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnode_def\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcontrol_input_ops\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_def\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mop_def\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1197\u001b[0m \u001b[38;5;28mself\u001b[39m \u001b[38;5;241m=\u001b[39m Operation(c_op, SymbolicTensor)\n\u001b[0;32m 1198\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_init(g)\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\util\\traceback_utils.py:150\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 148\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 149\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 150\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 151\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m 152\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n",
"File \u001b[1;32mc:\\Users\\Aryan\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\tensorflow\\python\\framework\\ops.py:1026\u001b[0m, in \u001b[0;36m_create_c_op\u001b[1;34m(graph, node_def, inputs, control_inputs, op_def, extract_traceback)\u001b[0m\n\u001b[0;32m 1024\u001b[0m \u001b[38;5;66;03m# pylint: disable=protected-access\u001b[39;00m\n\u001b[0;32m 1025\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m graph\u001b[38;5;241m.\u001b[39m_c_graph\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;28;01mas\u001b[39;00m c_graph:\n\u001b[1;32m-> 1026\u001b[0m op_desc \u001b[38;5;241m=\u001b[39m \u001b[43mpywrap_tf_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mTF_NewOperation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mc_graph\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1027\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_str\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode_def\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mop\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1028\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mas_str\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnode_def\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1029\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m node_def\u001b[38;5;241m.\u001b[39mdevice:\n\u001b[0;32m 1030\u001b[0m pywrap_tf_session\u001b[38;5;241m.\u001b[39mTF_SetDevice(op_desc, compat\u001b[38;5;241m.\u001b[39mas_str(node_def\u001b[38;5;241m.\u001b[39mdevice))\n",
"\u001b[1;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"import cv2\n",
"import numpy as np\n",
"from tensorflow.keras.models import load_model\n",
"from tensorflow.keras.preprocessing import image\n",
"\n",
"# Load the trained model\n",
"model_best = load_model('./model/face_modelCNN.h5') # set your machine model file path here\n",
"\n",
"# Classes 7 emotional states\n",
"class_names = ['Angry', 'Disgusted', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']\n",
"\n",
"# Load the pre-trained face cascade\n",
"face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')\n",
"\n",
"# Open a connection to the webcam (0 is usually the default camera)\n",
"cap = cv2.VideoCapture(0)\n",
"\n",
"while True:\n",
" # Capture frame-by-frame\n",
" ret, frame = cap.read()\n",
"\n",
" # Convert the frame to grayscale for face detection\n",
" gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n",
"\n",
" # Detect faces in the frame\n",
" faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5, minSize=(30, 30))\n",
"\n",
" # Process each detected face\n",
" for (x, y, w, h) in faces:\n",
" # Extract the face region\n",
" face_roi = frame[y:y + h, x:x + w]\n",
"\n",
" # Resize the face image to the required input size for the model\n",
" face_image = cv2.resize(face_roi, (48, 48))\n",
" face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)\n",
" face_image = image.img_to_array(face_image)\n",
" face_image = np.expand_dims(face_image, axis=0)\n",
" face_image = np.vstack([face_image])\n",
"\n",
" # Predict emotion using the loaded model\n",
" predictions = model_best.predict(face_image)\n",
" emotion_label = class_names[np.argmax(predictions)]\n",
"\n",
" # Display the emotion label on the frame\n",
" cv2.putText(frame, f'Emotion: {emotion_label}', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,\n",
" 0.9, (0, 0, 255), 2)\n",
"\n",
" # Draw a rectangle around the face\n",
" cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n",
"\n",
" # Display the resulting frame\n",
" cv2.imshow('Emotion Detection', frame)\n",
"\n",
" # Break the loop if 'q' key is pressed\n",
" if cv2.waitKey(1) & 0xFF == ord('q'):\n",
" break\n",
"\n",
"# Release the webcam and close the window\n",
"cap.release()\n",
"cv2.destroyAllWindows()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|