as-cle-bert commited on
Commit
e256579
·
verified ·
1 Parent(s): ef030e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -23
app.py CHANGED
@@ -28,9 +28,9 @@ def rewrite_csv_ordered_by_winning_rate(csv_path):
28
  # Save the sorted DataFrame to a new CSV file
29
  df_sorted.to_csv(csv_path, index=False)
30
 
31
- @spaces.GPU()
32
- def run_inference(pipe, prompt):
33
- response = pipe(prompt)
34
  bot_message = response[0]["generated_text"]
35
  return bot_message
36
 
@@ -39,7 +39,7 @@ def modelA_button():
39
  df = pd.read_csv("models.csv")
40
  df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1
41
  df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"]
42
- df.to_csv("models.csv", index=False)
43
  rewrite_csv_ordered_by_winning_rate("models.csv")
44
 
45
  def modelB_button():
@@ -47,34 +47,41 @@ def modelB_button():
47
  df = pd.read_csv("models.csv")
48
  df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1
49
  df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"]
50
- df.to_csv("models.csv", index=False)
51
  rewrite_csv_ordered_by_winning_rate("models.csv")
52
 
53
- def reply(modelA, modelB, prompt):
 
 
54
  global choice
55
  choice["ModelA"] = modelA
56
- choice["ModelB"] = modelB
57
  df = pd.read_csv("models.csv")
58
  df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1
59
- df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1
60
  df.to_csv("models.csv", index=False)
61
- pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device_map="cuda:0")
62
  responseA = run_inference(pipeA, prompt)
63
- pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device_map="cuda:1")
64
- responseB = run_inference(pipeB, prompt)
65
- return responseA, responseB
 
 
66
 
67
- modelA_dropdown = gr.Dropdown(models_checkpoints, label="Model A", info="Choose the first model for the battle!")
68
- modelB_dropdown = gr.Dropdown(models_checkpoints, label="Model B", info="Choose the second model for the battle!")
69
- prompt_textbox = gr.Textbox(label="Prompt", value="Is pineapple pizza sacrilegious?")
 
 
 
 
 
 
 
 
 
 
70
 
71
-
72
- with gr.Blocks() as demo1:
73
- demo0 = gr.Interface(fn=reply, inputs=[modelA_dropdown, modelB_dropdown, prompt_textbox], outputs=[gr.Textbox(label="Model A response"), gr.Textbox(label="Model B response")])
74
- btnA = gr.Button("Vote for Model A!")
75
- btnB = gr.Button("Vote for Model B!")
76
- btnA.click(modelA_button, inputs=None, outputs=None)
77
- btnB.click(modelB_button, inputs=None, outputs=None)
78
 
79
  with gr.Blocks() as demo2:
80
  f = open("tab.html")
@@ -84,7 +91,24 @@ with gr.Blocks() as demo2:
84
  btn = gr.Button("Refresh")
85
  btn.click(fn=refreshfn, inputs=None, outputs=t)
86
 
87
- demo = gr.TabbedInterface([demo1, demo2], ["Chat Arena", "Leaderboard"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
  if __name__ == "__main__":
90
  demo.launch(server_name="0.0.0.0", server_port=7860)
 
28
  # Save the sorted DataFrame to a new CSV file
29
  df_sorted.to_csv(csv_path, index=False)
30
 
31
+ @spaces.GPU(duration=200)
32
+ def run_inference(pipeline, prompt):
33
+ response = pipeline(prompt)
34
  bot_message = response[0]["generated_text"]
35
  return bot_message
36
 
 
39
  df = pd.read_csv("models.csv")
40
  df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1
41
  df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"]
42
+ df.to_csv("models.csv")
43
  rewrite_csv_ordered_by_winning_rate("models.csv")
44
 
45
  def modelB_button():
 
47
  df = pd.read_csv("models.csv")
48
  df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1
49
  df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"]
50
+ df.to_csv("models.csv")
51
  rewrite_csv_ordered_by_winning_rate("models.csv")
52
 
53
+ import time
54
+
55
+ def replyA(prompt, history, modelA):
56
  global choice
57
  choice["ModelA"] = modelA
 
58
  df = pd.read_csv("models.csv")
59
  df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1
 
60
  df.to_csv("models.csv", index=False)
61
+ pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda")
62
  responseA = run_inference(pipeA, prompt)
63
+ r = ''
64
+ for c in responseA:
65
+ r+=c
66
+ time.sleep(0.0001)
67
+ yield r
68
 
69
+ def replyB(prompt, history, modelB):
70
+ global choice
71
+ choice["ModelB"] = modelB
72
+ df = pd.read_csv("models.csv")
73
+ df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1
74
+ df.to_csv("models.csv", index=False)
75
+ pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda")
76
+ responseB = run_inference(pipeB, prompt)
77
+ r = ''
78
+ for c in responseB:
79
+ r+=c
80
+ time.sleep(0.0001)
81
+ yield r
82
 
83
+ modelAchoice = gr.Dropdown(models_checkpoints, label="Model A")
84
+ modelBchoice = gr.Dropdown(models_checkpoints, label="Model B")
 
 
 
 
 
85
 
86
  with gr.Blocks() as demo2:
87
  f = open("tab.html")
 
91
  btn = gr.Button("Refresh")
92
  btn.click(fn=refreshfn, inputs=None, outputs=t)
93
 
94
+
95
+ accrdnA = gr.Accordion(label="Choose model A")
96
+ accrdnB = gr.Accordion(label="Choose model B")
97
+
98
+ chtbA = gr.Chatbot(label="Chat with Model A")
99
+ chtbB = gr.Chatbot(label="Chat with Model B")
100
+
101
+ with gr.Blocks() as demo1:
102
+ gr.ChatInterface(fn=replyA, chatbot=chtbA, additional_inputs=modelAchoice, additional_inputs_accordion=accrdnA, submit_btn="Submit to Model A")
103
+ gr.ChatInterface(fn=replyB, chatbot=chtbB, additional_inputs=modelBchoice, additional_inputs_accordion=accrdnB, submit_btn="Submit to Model B")
104
+ btnA = gr.Button("Vote for Model A!")
105
+ btnB = gr.Button("Vote for Model B!")
106
+ btnA.click(modelA_button, inputs=None, outputs=None)
107
+ btnB.click(modelB_button, inputs=None, outputs=None)
108
+
109
+ demo = gr.TabbedInterface([demo1, demo2], ["Chat Arena", "Leaderboard"], title="""<h1 align='center'>SmolLM Arena</h1>
110
+ <h2 align='center'>Cast your vote to choose the best Small Language Model (100M-1.7B)!🚀</h2>
111
+ <h3 align='center'>[<a href="https://github.com/AstraBert/smollm-arena">GitHub</a>] [<a href="https://github.com/AstraBert/smollm-arena?tab=readme-ov-file#usage">Usage Guide</a>]""")
112
 
113
  if __name__ == "__main__":
114
  demo.launch(server_name="0.0.0.0", server_port=7860)