File size: 13,389 Bytes
1028a4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e61c7d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39abc8d
56e3c29
bd1ee8d
 
 
 
 
1028a4f
bd1ee8d
 
 
 
51b55ad
97e3cb7
bd1ee8d
51b55ad
e61c7d1
 
51b55ad
bd1ee8d
e61c7d1
bd1ee8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028a4f
97e3cb7
e61c7d1
2bb11c3
51b55ad
97e3cb7
e61c7d1
 
 
 
 
1028a4f
e61c7d1
1028a4f
 
 
bd1ee8d
 
e61c7d1
bd1ee8d
 
 
 
 
 
e61c7d1
1028a4f
bd1ee8d
e61c7d1
bd1ee8d
 
 
 
 
 
 
 
e61c7d1
bd1ee8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e61c7d1
bd1ee8d
 
 
 
 
 
39abc8d
e61c7d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image

# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", "Type here...")

# if st.button("Check News"):
#     st.write("🔍 Processing...")
#     st.success("✅ Result: This news is FAKE.")  # Replace with ML Model

# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

# def compress_image(image, quality=90, max_size=(300, 300)):  # ✅ High clarity image
#     img = Image.open(image).convert("RGB")
#     img.thumbnail(max_size)  
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#     img.save(temp_file.name, "JPEG", quality=quality)
#     return temp_file.name

# if uploaded_image is not None:
#     compressed_image_path = compress_image(uploaded_image)
#     st.image(compressed_image_path, caption="🖼️ Compressed & Clear Image", use_column_width=True)
#     if st.button("Analyze Image"):
#         st.write("🔍 Processing...")
#         st.error("⚠️ Result: This image is a Deepfake.")  # Replace with model

# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

# def compress_video(video):
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")

#     with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
#         temp_video.write(video.read())
#         video_path = temp_video.name

#     cap = cv2.VideoCapture(video_path)
    
#     if not cap.isOpened():
#         st.error("❌ Error: Unable to read video!")
#         return None

#     fourcc = cv2.VideoWriter_fourcc(*'mp4v')

#     # ✅ New Resolution (100x80) & 15 FPS
#     frame_width = 50  
#     frame_height = 80  
#     out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))  

#     while cap.isOpened():
#         ret, frame = cap.read()
#         if not ret:
#             break
#         frame = cv2.resize(frame, (frame_width, frame_height))
#         out.write(frame)

#     cap.release()
#     out.release()
    
#     return temp_file.name

# if uploaded_video is not None:
#     st.video(uploaded_video)  # ✅ فوراً ویڈیو اپ لوڈ ہونے کے بعد دکھائیں
#     compressed_video_path = compress_video(uploaded_video)
#     if compressed_video_path:
#         st.video(compressed_video_path)  # ✅ کمپریسڈ ویڈیو بھی دکھائیں
#         if st.button("Analyze Video"):
#             st.write("🔍 Processing...")
#             st.warning("⚠️ Result: This video contains Deepfake elements.")  # Replace with model

# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")

# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image
# import tensorflow as tf
# from transformers import pipeline
# from tensorflow.keras.applications import Xception, EfficientNetB7
# from tensorflow.keras.models import Model
# from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
# from tensorflow.keras.preprocessing.image import load_img, img_to_array

# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# # Load Models
# fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")

# # Load Deepfake Detection Models
# base_model_image = Xception(weights="imagenet", include_top=False)
# base_model_image.trainable = False  # Freeze base layers
# x = GlobalAveragePooling2D()(base_model_image.output)
# x = Dense(1024, activation="relu")(x)
# x = Dense(1, activation="sigmoid")(x)  # Sigmoid for probability output
# deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)

# base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
# base_model_video.trainable = False
# x = GlobalAveragePooling2D()(base_model_video.output)
# x = Dense(1024, activation="relu")(x)
# x = Dense(1, activation="sigmoid")(x)
# deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)

# # Function to Preprocess Image
# def preprocess_image(image_path):
#     img = load_img(image_path, target_size=(299, 299))  # Xception expects 299x299
#     img = img_to_array(img)
#     img = np.expand_dims(img, axis=0)
#     img /= 255.0  # Normalize pixel values
#     return img

# # Function to Detect Deepfake Image
# def detect_deepfake_image(image_path):
#     image = preprocess_image(image_path)
#     prediction = deepfake_image_model.predict(image)[0][0]
#     confidence = round(float(prediction), 2)
#     label = "FAKE" if confidence > 0.5 else "REAL"
#     return {"label": label, "score": confidence}

# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", placeholder="Type here...")

# if st.button("Check News"):
#     st.write("🔍 Processing...")
#     prediction = fake_news_detector(news_input)
#     label = prediction[0]['label']
#     confidence = prediction[0]['score']
    
#     if label == "FAKE":
#         st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
#     else:
#         st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")

# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

# if uploaded_image is not None:
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#     img = Image.open(uploaded_image).convert("RGB")
#     img.save(temp_file.name, "JPEG")
#     st.image(temp_file.name, caption="🖼️ Uploaded Image", use_column_width=True)
    
#     if st.button("Analyze Image"):
#         st.write("🔍 Processing...")
#         result = detect_deepfake_image(temp_file.name)
        
#         if result["label"] == "FAKE":
#             st.error(f"⚠️ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
#         else:
#             st.success(f"✅ Result: This image is Real. (Confidence: {1 - result['score']:.2f})")

# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

# def detect_deepfake_video(video_path):
#     cap = cv2.VideoCapture(video_path)
#     frame_scores = []
    
#     while cap.isOpened():
#         ret, frame = cap.read()
#         if not ret:
#             break
        
#         frame_path = "temp_frame.jpg"
#         cv2.imwrite(frame_path, frame)
#         result = detect_deepfake_image(frame_path)
#         frame_scores.append(result["score"])
#         os.remove(frame_path)
    
#     cap.release()
#     avg_score = np.mean(frame_scores)
#     final_label = "FAKE" if avg_score > 0.5 else "REAL"
#     return {"label": final_label, "score": round(float(avg_score), 2)}

# if uploaded_video is not None:
#     st.video(uploaded_video)
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
#     with open(temp_file.name, "wb") as f:
#         f.write(uploaded_video.read())
    
#     if st.button("Analyze Video"):
#         st.write("🔍 Processing...")
#         result = detect_deepfake_video(temp_file.name)
        
#         if result["label"] == "FAKE":
#             st.warning(f"⚠️ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
#         else:
#             st.success(f"✅ Result: This video is Real. (Confidence: {1 - result['score']:.2f})")

# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")

import streamlit as st
import numpy as np
import cv2
import tempfile
import os
from PIL import Image
import tensorflow as tf
from transformers import pipeline
from tensorflow.keras.applications import Xception, EfficientNetB7
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.preprocessing.image import load_img, img_to_array

# ---- Page Configuration ----
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

st.title("\U0001F4F0 Fake News & Deepfake Detection Tool")
st.write("\U0001F680 Detect Fake News, Deepfake Images, and Videos using AI")

# Load Models
fake_news_detector = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

# Load Deepfake Detection Models
base_model_image = Xception(weights="imagenet", include_top=False)
base_model_image.trainable = False  # Freeze base layers
x = GlobalAveragePooling2D()(base_model_image.output)
x = Dense(1024, activation="relu")(x)
x = Dense(1, activation="sigmoid")(x)  # Sigmoid for probability output
deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)

base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
base_model_video.trainable = False
x = GlobalAveragePooling2D()(base_model_video.output)
x = Dense(1024, activation="relu")(x)
x = Dense(1, activation="sigmoid")(x)
deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)

# Function to Preprocess Image
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(299, 299))  # Xception expects 299x299
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img /= 255.0  # Normalize pixel values
    return img

# Function to Detect Deepfake Image
def detect_deepfake_image(image_path):
    image = preprocess_image(image_path)
    prediction = deepfake_image_model.predict(image)[0][0]
    confidence = round(float(prediction), 2)
    label = "FAKE" if confidence > 0.5 else "REAL"
    return {"label": label, "score": confidence}

# ---- Fake News Detection Section ----
st.subheader("\U0001F4DD Fake News Detection")
news_input = st.text_area("Enter News Text:", placeholder="Type here...")

if st.button("Check News"):
    st.write("\U0001F50D Processing...")
    labels = ["fake news", "real news"]
    prediction = fake_news_detector(news_input, labels)
    label = prediction['labels'][0]
    confidence = prediction['scores'][0]
    
    if label == "fake news":
        st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
    else:
        st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")

# ---- Deepfake Image Detection Section ----
st.subheader("\U0001F4F8 Deepfake Image Detection")
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

if uploaded_image is not None:
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
    img = Image.open(uploaded_image).convert("RGB")
    img.save(temp_file.name, "JPEG")
    st.image(temp_file.name, caption="\U0001F5BC️ Uploaded Image", use_column_width=True)
    
    if st.button("Analyze Image"):
        st.write("\U0001F50D Processing...")
        result = detect_deepfake_image(temp_file.name)
        
        if result["label"] == "FAKE":
            st.error(f"⚠️ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
        else:
            st.success(f"✅ Result: This image is Real. (Confidence: {1 - result['score']:.2f})")

# ---- Deepfake Video Detection Section ----
st.subheader("\U0001F3A5 Deepfake Video Detection")
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

def detect_deepfake_video(video_path):
    cap = cv2.VideoCapture(video_path)
    frame_scores = []
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        frame_path = "temp_frame.jpg"
        cv2.imwrite(frame_path, frame)
        result = detect_deepfake_image(frame_path)
        frame_scores.append(result["score"])
        os.remove(frame_path)
    
    cap.release()
    avg_score = np.mean(frame_scores)
    final_label = "FAKE" if avg_score > 0.5 else "REAL"
    return {"label": final_label, "score": round(float(avg_score), 2)}

if uploaded_video is not None:
    st.video(uploaded_video)
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
    with open(temp_file.name, "wb") as f:
        f.write(uploaded_video.read())
    
    if st.button("Analyze Video"):
        st.write("\U0001F50D Processing...")
        result = detect_deepfake_video(temp_file.name)
        
        if result["label"] == "FAKE":
            st.warning(f"⚠️ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
        else:
            st.success(f"✅ Result: This video is Real. (Confidence: {1 - result['score']:.2f})")

st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")