File size: 3,791 Bytes
56e3c29 39abc8d c29b197 56e3c29 39abc8d 56e3c29 39abc8d 56e3c29 39abc8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
# st.title("π° Fake News & Deepfake Detection Tool")
# st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
# # ---- Fake News Detection Section ----
# st.subheader("π Fake News Detection")
# news_input = st.text_area("Enter News Text:", "Type here...")
# if st.button("Check News"):
# st.write("π Processing...")
# # Fake news detection logic (Placeholder)
# st.success("β
Result: This news is FAKE.") # Replace with ML Model
# # ---- Deepfake Image Detection Section ----
# st.subheader("πΈ Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
# if uploaded_image is not None:
# st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
# if st.button("Analyze Image"):
# st.write("π Processing...")
# # Deepfake detection logic (Placeholder)
# st.error("β οΈ Result: This image is a Deepfake.") # Replace with model
# # ---- Deepfake Video Detection Section ----
# st.subheader("π₯ Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
# if uploaded_video is not None:
# st.video(uploaded_video)
# if st.button("Analyze Video"):
# st.write("π Processing...")
# # Deepfake video detection logic (Placeholder)
# st.warning("β οΈ Result: This video contains Deepfake elements.") # Replace with model
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
import streamlit as st
import cv2
import numpy as np
import tempfile
import os
from PIL import Image
def compress_image(image, quality=20):
img = Image.open(image)
img = img.convert("RGB")
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
img.save(temp_file.name, "JPEG", quality=quality)
return temp_file.name
def compress_video(video):
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
cap = cv2.VideoCapture(video)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
frame_width = int(cap.get(3) // 2)
frame_height = int(cap.get(4) // 2)
out = cv2.VideoWriter(temp_file.name, fourcc, 20.0, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (frame_width, frame_height))
out.write(frame)
cap.release()
out.release()
return temp_file.name
st.title("π΅οΈββοΈ Fake News & Deepfake Detection Tool")
st.sidebar.header("Upload your file")
option = st.sidebar.radio("Select file type", ["Image", "Video", "Text"])
if option == "Image":
uploaded_file = st.sidebar.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
compressed_path = compress_image(uploaded_file)
image = Image.open(compressed_path)
st.image(image, caption="Compressed Image", use_column_width=True)
st.success("β
Image uploaded and compressed successfully!")
elif option == "Video":
uploaded_file = st.sidebar.file_uploader("Upload a video", type=["mp4", "avi", "mov"])
if uploaded_file is not None:
compressed_path = compress_video(uploaded_file)
st.video(compressed_path)
st.success("β
Video uploaded and compressed successfully!")
elif option == "Text":
text_input = st.text_area("Enter your text for analysis")
if text_input:
st.write("π Fake news detection processing...")
st.success("β
Text analysis completed!")
|