File size: 10,278 Bytes
1028a4f 6702b7b 39abc8d 56e3c29 1028a4f 6702b7b 51b55ad 97e3cb7 6702b7b 51b55ad 97e3cb7 51b55ad 6702b7b 1028a4f 97e3cb7 6b62223 51b55ad 97e3cb7 6702b7b 1028a4f 6702b7b 1028a4f 6702b7b 39abc8d 15a675f 1028a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image
# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")
# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", "Type here...")
# if st.button("Check News"):
# st.write("🔍 Processing...")
# st.success("✅ Result: This news is FAKE.") # Replace with ML Model
# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
# def compress_image(image, quality=90, max_size=(300, 300)): # ✅ High clarity image
# img = Image.open(image).convert("RGB")
# img.thumbnail(max_size)
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
# img.save(temp_file.name, "JPEG", quality=quality)
# return temp_file.name
# if uploaded_image is not None:
# compressed_image_path = compress_image(uploaded_image)
# st.image(compressed_image_path, caption="🖼️ Compressed & Clear Image", use_column_width=True)
# if st.button("Analyze Image"):
# st.write("🔍 Processing...")
# st.error("⚠️ Result: This image is a Deepfake.") # Replace with model
# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
# def compress_video(video):
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
# temp_video.write(video.read())
# video_path = temp_video.name
# cap = cv2.VideoCapture(video_path)
# if not cap.isOpened():
# st.error("❌ Error: Unable to read video!")
# return None
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# # ✅ New Resolution (100x80) & 15 FPS
# frame_width = 50
# frame_height = 80
# out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# frame = cv2.resize(frame, (frame_width, frame_height))
# out.write(frame)
# cap.release()
# out.release()
# return temp_file.name
# if uploaded_video is not None:
# st.video(uploaded_video) # ✅ فوراً ویڈیو اپ لوڈ ہونے کے بعد دکھائیں
# compressed_video_path = compress_video(uploaded_video)
# if compressed_video_path:
# st.video(compressed_video_path) # ✅ کمپریسڈ ویڈیو بھی دکھائیں
# if st.button("Analyze Video"):
# st.write("🔍 Processing...")
# st.warning("⚠️ Result: This video contains Deepfake elements.") # Replace with model
# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")
# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image
# import tensorflow as tf
# from transformers import pipeline
# from tensorflow.keras.applications import Xception, EfficientNetB7
# from tensorflow.keras.models import Model
# from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
# from tensorflow.keras.preprocessing.image import load_img, img_to_array
# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")
# # Load Models
# fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")
# # Load Deepfake Detection Models
# base_model_image = Xception(weights="imagenet", include_top=False)
# base_model_image.trainable = False # Freeze base layers
# x = GlobalAveragePooling2D()(base_model_image.output)
# x = Dense(1024, activation="relu")(x)
# x = Dense(1, activation="sigmoid")(x) # Sigmoid for probability output
# deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)
# base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
# base_model_video.trainable = False
# x = GlobalAveragePooling2D()(base_model_video.output)
# x = Dense(1024, activation="relu")(x)
# x = Dense(1, activation="sigmoid")(x)
# deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)
# # Function to Preprocess Image
# def preprocess_image(image_path):
# img = load_img(image_path, target_size=(299, 299)) # Xception expects 299x299
# img = img_to_array(img)
# img = np.expand_dims(img, axis=0)
# img /= 255.0 # Normalize pixel values
# return img
# # Function to Detect Deepfake Image
# def detect_deepfake_image(image_path):
# image = preprocess_image(image_path)
# prediction = deepfake_image_model.predict(image)[0][0]
# confidence = round(float(prediction), 2)
# label = "FAKE" if confidence > 0.5 else "REAL"
# return {"label": label, "score": confidence}
# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", placeholder="Type here...")
# if st.button("Check News"):
# st.write("🔍 Processing...")
# prediction = fake_news_detector(news_input)
# label = prediction[0]['label']
# confidence = prediction[0]['score']
# if label == "FAKE":
# st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
# else:
# st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")
# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
# if uploaded_image is not None:
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
# img = Image.open(uploaded_image).convert("RGB")
# img.save(temp_file.name, "JPEG")
# st.image(temp_file.name, caption="🖼️ Uploaded Image", use_column_width=True)
# if st.button("Analyze Image"):
# st.write("🔍 Processing...")
# result = detect_deepfake_image(temp_file.name)
# if result["label"] == "FAKE":
# st.error(f"⚠️ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
# else:
# st.success(f"✅ Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
# def detect_deepfake_video(video_path):
# cap = cv2.VideoCapture(video_path)
# frame_scores = []
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# frame_path = "temp_frame.jpg"
# cv2.imwrite(frame_path, frame)
# result = detect_deepfake_image(frame_path)
# frame_scores.append(result["score"])
# os.remove(frame_path)
# cap.release()
# avg_score = np.mean(frame_scores)
# final_label = "FAKE" if avg_score > 0.5 else "REAL"
# return {"label": final_label, "score": round(float(avg_score), 2)}
# if uploaded_video is not None:
# st.video(uploaded_video)
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
# with open(temp_file.name, "wb") as f:
# f.write(uploaded_video.read())
# if st.button("Analyze Video"):
# st.write("🔍 Processing...")
# result = detect_deepfake_video(temp_file.name)
# if result["label"] == "FAKE":
# st.warning(f"⚠️ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
# else:
# st.success(f"✅ Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")
import streamlit as st
import numpy as np
from transformers import pipeline
import requests
# ---- Page Configuration ----
st.set_page_config(page_title="Fake News & Deepfake Detection", layout="wide")
st.title("📰 Fake News & Deepfake Detection Tool")
st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")
# Load Improved Fake News Detection Model
fake_news_detector = pipeline("text-classification", model="roberta-base-openai-detector")
# Fact-Checking API Function
def fact_check_google(news_text):
api_url = f'https://factchecktools.googleapis.com/v1alpha1/claims:search?query={news_text}&key=YOUR_GOOGLE_FACTCHECK_API_KEY'
response = requests.get(api_url)
if response.status_code == 200:
data = response.json()
if "claims" in data:
return data["claims"]
return None
# ---- Fake News Detection Section ----
st.subheader("📝 Fake News Detection")
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
if st.button("Check News"):
st.write("🔍 Processing...")
# Step 1: AI-Based Classification
prediction = fake_news_detector(news_input)
label = prediction[0]['label']
confidence = prediction[0]['score']
# Step 2: Fact Checking via API
fact_check_result = fact_check_google(news_input)
if label == "FAKE":
st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
else:
st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")
# Display Fact Check Results
if fact_check_result:
st.write("📜 Fact Check Results:")
for claim in fact_check_result:
st.write(f"🔹 {claim['text']} - *{claim['claimReview'][0]['textualRating']}*")
else:
st.warning("⚠️ No Fact-Check Data Available.")
st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")
|