File size: 10,278 Bytes
1028a4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6702b7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39abc8d
56e3c29
1028a4f
6702b7b
51b55ad
97e3cb7
6702b7b
51b55ad
97e3cb7
 
51b55ad
6702b7b
 
 
 
 
 
 
 
 
 
 
 
1028a4f
97e3cb7
 
6b62223
51b55ad
97e3cb7
 
6702b7b
 
1028a4f
 
 
 
6702b7b
 
 
1028a4f
 
 
 
 
6702b7b
 
 
 
 
 
 
39abc8d
15a675f
1028a4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image

# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", "Type here...")

# if st.button("Check News"):
#     st.write("🔍 Processing...")
#     st.success("✅ Result: This news is FAKE.")  # Replace with ML Model

# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

# def compress_image(image, quality=90, max_size=(300, 300)):  # ✅ High clarity image
#     img = Image.open(image).convert("RGB")
#     img.thumbnail(max_size)  
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#     img.save(temp_file.name, "JPEG", quality=quality)
#     return temp_file.name

# if uploaded_image is not None:
#     compressed_image_path = compress_image(uploaded_image)
#     st.image(compressed_image_path, caption="🖼️ Compressed & Clear Image", use_column_width=True)
#     if st.button("Analyze Image"):
#         st.write("🔍 Processing...")
#         st.error("⚠️ Result: This image is a Deepfake.")  # Replace with model

# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

# def compress_video(video):
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")

#     with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
#         temp_video.write(video.read())
#         video_path = temp_video.name

#     cap = cv2.VideoCapture(video_path)
    
#     if not cap.isOpened():
#         st.error("❌ Error: Unable to read video!")
#         return None

#     fourcc = cv2.VideoWriter_fourcc(*'mp4v')

#     # ✅ New Resolution (100x80) & 15 FPS
#     frame_width = 50  
#     frame_height = 80  
#     out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))  

#     while cap.isOpened():
#         ret, frame = cap.read()
#         if not ret:
#             break
#         frame = cv2.resize(frame, (frame_width, frame_height))
#         out.write(frame)

#     cap.release()
#     out.release()
    
#     return temp_file.name

# if uploaded_video is not None:
#     st.video(uploaded_video)  # ✅ فوراً ویڈیو اپ لوڈ ہونے کے بعد دکھائیں
#     compressed_video_path = compress_video(uploaded_video)
#     if compressed_video_path:
#         st.video(compressed_video_path)  # ✅ کمپریسڈ ویڈیو بھی دکھائیں
#         if st.button("Analyze Video"):
#             st.write("🔍 Processing...")
#             st.warning("⚠️ Result: This video contains Deepfake elements.")  # Replace with model

# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")

# import streamlit as st
# import numpy as np
# import cv2
# import tempfile
# import os
# from PIL import Image
# import tensorflow as tf
# from transformers import pipeline
# from tensorflow.keras.applications import Xception, EfficientNetB7
# from tensorflow.keras.models import Model
# from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
# from tensorflow.keras.preprocessing.image import load_img, img_to_array

# # ---- Page Configuration ----
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")

# st.title("📰 Fake News & Deepfake Detection Tool")
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# # Load Models
# fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")

# # Load Deepfake Detection Models
# base_model_image = Xception(weights="imagenet", include_top=False)
# base_model_image.trainable = False  # Freeze base layers
# x = GlobalAveragePooling2D()(base_model_image.output)
# x = Dense(1024, activation="relu")(x)
# x = Dense(1, activation="sigmoid")(x)  # Sigmoid for probability output
# deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)

# base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
# base_model_video.trainable = False
# x = GlobalAveragePooling2D()(base_model_video.output)
# x = Dense(1024, activation="relu")(x)
# x = Dense(1, activation="sigmoid")(x)
# deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)

# # Function to Preprocess Image
# def preprocess_image(image_path):
#     img = load_img(image_path, target_size=(299, 299))  # Xception expects 299x299
#     img = img_to_array(img)
#     img = np.expand_dims(img, axis=0)
#     img /= 255.0  # Normalize pixel values
#     return img

# # Function to Detect Deepfake Image
# def detect_deepfake_image(image_path):
#     image = preprocess_image(image_path)
#     prediction = deepfake_image_model.predict(image)[0][0]
#     confidence = round(float(prediction), 2)
#     label = "FAKE" if confidence > 0.5 else "REAL"
#     return {"label": label, "score": confidence}

# # ---- Fake News Detection Section ----
# st.subheader("📝 Fake News Detection")
# news_input = st.text_area("Enter News Text:", placeholder="Type here...")

# if st.button("Check News"):
#     st.write("🔍 Processing...")
#     prediction = fake_news_detector(news_input)
#     label = prediction[0]['label']
#     confidence = prediction[0]['score']
    
#     if label == "FAKE":
#         st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
#     else:
#         st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")

# # ---- Deepfake Image Detection Section ----
# st.subheader("📸 Deepfake Image Detection")
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])

# if uploaded_image is not None:
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
#     img = Image.open(uploaded_image).convert("RGB")
#     img.save(temp_file.name, "JPEG")
#     st.image(temp_file.name, caption="🖼️ Uploaded Image", use_column_width=True)
    
#     if st.button("Analyze Image"):
#         st.write("🔍 Processing...")
#         result = detect_deepfake_image(temp_file.name)
        
#         if result["label"] == "FAKE":
#             st.error(f"⚠️ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
#         else:
#             st.success(f"✅ Result: This image is Real. (Confidence: {1 - result['score']:.2f})")

# # ---- Deepfake Video Detection Section ----
# st.subheader("🎥 Deepfake Video Detection")
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])

# def detect_deepfake_video(video_path):
#     cap = cv2.VideoCapture(video_path)
#     frame_scores = []
    
#     while cap.isOpened():
#         ret, frame = cap.read()
#         if not ret:
#             break
        
#         frame_path = "temp_frame.jpg"
#         cv2.imwrite(frame_path, frame)
#         result = detect_deepfake_image(frame_path)
#         frame_scores.append(result["score"])
#         os.remove(frame_path)
    
#     cap.release()
#     avg_score = np.mean(frame_scores)
#     final_label = "FAKE" if avg_score > 0.5 else "REAL"
#     return {"label": final_label, "score": round(float(avg_score), 2)}

# if uploaded_video is not None:
#     st.video(uploaded_video)
#     temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
#     with open(temp_file.name, "wb") as f:
#         f.write(uploaded_video.read())
    
#     if st.button("Analyze Video"):
#         st.write("🔍 Processing...")
#         result = detect_deepfake_video(temp_file.name)
        
#         if result["label"] == "FAKE":
#             st.warning(f"⚠️ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
#         else:
#             st.success(f"✅ Result: This video is Real. (Confidence: {1 - result['score']:.2f})")

# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")

import streamlit as st
import numpy as np
from transformers import pipeline
import requests

# ---- Page Configuration ----
st.set_page_config(page_title="Fake News & Deepfake Detection", layout="wide")

st.title("📰 Fake News & Deepfake Detection Tool")
st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")

# Load Improved Fake News Detection Model
fake_news_detector = pipeline("text-classification", model="roberta-base-openai-detector")

# Fact-Checking API Function
def fact_check_google(news_text):
    api_url = f'https://factchecktools.googleapis.com/v1alpha1/claims:search?query={news_text}&key=YOUR_GOOGLE_FACTCHECK_API_KEY'
    response = requests.get(api_url)
    if response.status_code == 200:
        data = response.json()
        if "claims" in data:
            return data["claims"]
    return None

# ---- Fake News Detection Section ----
st.subheader("📝 Fake News Detection")
news_input = st.text_area("Enter News Text:", placeholder="Type here...")

if st.button("Check News"):
    st.write("🔍 Processing...")
    
    # Step 1: AI-Based Classification
    prediction = fake_news_detector(news_input)
    label = prediction[0]['label']
    confidence = prediction[0]['score']
    
    # Step 2: Fact Checking via API
    fact_check_result = fact_check_google(news_input)
    
    if label == "FAKE":
        st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
    else:
        st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")
    
    # Display Fact Check Results
    if fact_check_result:
        st.write("📜 Fact Check Results:")
        for claim in fact_check_result:
            st.write(f"🔹 {claim['text']} - *{claim['claimReview'][0]['textualRating']}*")
    else:
        st.warning("⚠️ No Fact-Check Data Available.")

st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")