File size: 1,669 Bytes
c29b197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import numpy as np
import cv2
import tempfile
import os
# ---- Page Configuration ----
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
st.title("π° Fake News & Deepfake Detection Tool")
st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
# ---- Fake News Detection Section ----
st.subheader("π Fake News Detection")
news_input = st.text_area("Enter News Text:", "Type here...")
if st.button("Check News"):
st.write("π Processing...")
# Fake news detection logic (Placeholder)
st.success("β
Result: This news is FAKE.") # Replace with ML Model
# ---- Deepfake Image Detection Section ----
st.subheader("πΈ Deepfake Image Detection")
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
if uploaded_image is not None:
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
if st.button("Analyze Image"):
st.write("π Processing...")
# Deepfake detection logic (Placeholder)
st.error("β οΈ Result: This image is a Deepfake.") # Replace with model
# ---- Deepfake Video Detection Section ----
st.subheader("π₯ Deepfake Video Detection")
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
if uploaded_video is not None:
st.video(uploaded_video)
if st.button("Analyze Video"):
st.write("π Processing...")
# Deepfake video detection logic (Placeholder)
st.warning("β οΈ Result: This video contains Deepfake elements.") # Replace with model
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|