import streamlit as st import numpy as np import cv2 import tempfile import os # ---- Page Configuration ---- st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide") st.title("📰 Fake News & Deepfake Detection Tool") st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI") # ---- Fake News Detection Section ---- st.subheader("📝 Fake News Detection") news_input = st.text_area("Enter News Text:", "Type here...") if st.button("Check News"): st.write("🔍 Processing...") # Fake news detection logic (Placeholder) st.success("✅ Result: This news is FAKE.") # Replace with ML Model # ---- Deepfake Image Detection Section ---- st.subheader("📸 Deepfake Image Detection") uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"]) if uploaded_image is not None: st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) if st.button("Analyze Image"): st.write("🔍 Processing...") # Deepfake detection logic (Placeholder) st.error("⚠️ Result: This image is a Deepfake.") # Replace with model # ---- Deepfake Video Detection Section ---- st.subheader("🎥 Deepfake Video Detection") uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"]) if uploaded_video is not None: st.video(uploaded_video) if st.button("Analyze Video"): st.write("🔍 Processing...") # Deepfake video detection logic (Placeholder) st.warning("⚠️ Result: This video contains Deepfake elements.") # Replace with model st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")