Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import json | |
from PIL import Image | |
def get_attributes(json): | |
liveness = "GENUINE" if json.get('liveness') >= 0.5 else "FAKE" | |
attr = json.get('attribute') | |
age = attr.get('age') | |
gender = attr.get('gender') | |
emotion = attr.get('emotion') | |
ethnicity = attr.get('ethnicity') | |
mask = [attr.get('face_mask')] | |
if attr.get('glasses') == 'USUAL': | |
mask.append('GLASSES') | |
if attr.get('glasses') == 'DARK': | |
mask.append('SUNGLASSES') | |
eye = [] | |
if attr.get('eye_left') >= 0.3: | |
eye.append('LEFT') | |
if attr.get('eye_right') >= 0.3: | |
eye.append('RIGHT') | |
facehair = attr.get('facial_hair') | |
haircolor = attr.get('hair_color') | |
hairtype = attr.get('hair_type') | |
headwear = attr.get('headwear') | |
activity = [] | |
if attr.get('food_consumption') >= 0.5: | |
activity.append('EATING') | |
if attr.get('phone_recording') >= 0.5: | |
activity.append('PHONE_RECORDING') | |
if attr.get('phone_use') >= 0.5: | |
activity.append('PHONE_USE') | |
if attr.get('seatbelt') >= 0.5: | |
activity.append('SEATBELT') | |
if attr.get('smoking') >= 0.5: | |
activity.append('SMOKING') | |
pitch = attr.get('pitch') | |
roll = attr.get('roll') | |
yaw = attr.get('yaw') | |
quality = attr.get('quality') | |
return liveness, age, gender, emotion, ethnicity, mask, eye, facehair, haircolor, hairtype, headwear, activity, pitch, roll, yaw, quality | |
def compare_face(frame1, frame2): | |
url = "https://recognito.p.rapidapi.com/api/face" | |
try: | |
files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')} | |
headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")} | |
r = requests.post(url=url, files=files, headers=headers) | |
except: | |
raise gr.Error("Please select images files!") | |
faces = None | |
try: | |
image1 = Image.open(frame1) | |
image2 = Image.open(frame2) | |
face1 = Image.new('RGBA',(150, 150), (80,80,80,0)) | |
face2 = Image.new('RGBA',(150, 150), (80,80,80,0)) | |
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1 = [None] * 16 | |
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2 = [None] * 16 | |
res1 = r.json().get('image1') | |
if res1 is not None and res1: | |
face = res1.get('detection') | |
x1 = face.get('x') | |
y1 = face.get('y') | |
x2 = x1 + face.get('w') | |
y2 = y1 + face.get('h') | |
if x1 < 0: | |
x1 = 0 | |
if y1 < 0: | |
y1 = 0 | |
if x2 >= image1.width: | |
x2 = image1.width - 1 | |
if y2 >= image1.height: | |
y2 = image1.height - 1 | |
face1 = image1.crop((x1, y1, x2, y2)) | |
face_image_ratio = face1.width / float(face1.height) | |
resized_w = int(face_image_ratio * 150) | |
resized_h = 150 | |
face1 = face1.resize((int(resized_w), int(resized_h))) | |
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1 = get_attributes(res1) | |
res2 = r.json().get('image2') | |
if res2 is not None and res2: | |
face = res2.get('detection') | |
x1 = face.get('x') | |
y1 = face.get('y') | |
x2 = x1 + face.get('w') | |
y2 = y1 + face.get('h') | |
if x1 < 0: | |
x1 = 0 | |
if y1 < 0: | |
y1 = 0 | |
if x2 >= image2.width: | |
x2 = image2.width - 1 | |
if y2 >= image2.height: | |
y2 = image2.height - 1 | |
face2 = image2.crop((x1, y1, x2, y2)) | |
face_image_ratio = face2.width / float(face2.height) | |
resized_w = int(face_image_ratio * 150) | |
resized_h = 150 | |
face2 = face2.resize((int(resized_w), int(resized_h))) | |
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2 = get_attributes(res2) | |
except: | |
pass | |
matching_result = "" | |
if face1 is not None and face2 is not None: | |
matching_score = r.json().get('matching_score') | |
if matching_score is not None: | |
matching_result = """<br/><br/><br/><h1 style="text-align: center;color: #05ee3c;">SAME<br/>PERSON</h1>""" if matching_score >= 0.7 else """<br/><br/><br/><h1 style="text-align: center;color: red;">DIFFERENT<br/>PERSON</h1>""" | |
return [r.json(), [face1, face2], matching_result, | |
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1, | |
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# **Recognito Face Analysis** | |
## NIST FRVT Top #1 Face Recognition Algorithm Developer<br/> | |
## Contact us at https://recognito.vision | |
<img src="https://recognito.vision/wp-content/uploads/2023/12/black-1.png" alt="NIST FRVT 1:1 Leaderboard" width="50%"> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
compare_face_input1 = gr.Image(label="Image1", type='filepath', height=270) | |
gr.Examples(['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg'], | |
inputs=compare_face_input1) | |
compare_face_input2 = gr.Image(label="Image2", type='filepath', height=270) | |
gr.Examples(['examples/5.jpg', 'examples/6.jpg', 'examples/7.jpg', 'examples/8.jpg'], | |
inputs=compare_face_input2) | |
compare_face_button = gr.Button("Face Analysis & Verification", variant="primary", size="lg") | |
with gr.Column(scale=2): | |
with gr.Row(): | |
compare_face_output = gr.Gallery(label="Faces", height=230, columns=[2], rows=[1]) | |
with gr.Column(variant="panel"): | |
compare_result = gr.Markdown("") | |
with gr.Row(): | |
with gr.Column(variant="panel"): | |
gr.Markdown("<b>Image 1<b/>") | |
liveness1 = gr.CheckboxGroup(["GENUINE", "FAKE"], label="Liveness") | |
age1 = gr.Number(0, label="Age") | |
gender1 = gr.CheckboxGroup(["MALE", "FEMALE"], label="Gender") | |
emotion1 = gr.CheckboxGroup(["HAPPINESS", "ANGER", "FEAR", "NEUTRAL", "SADNESS", "SURPRISE"], label="Emotion") | |
ethnicity1 = gr.CheckboxGroup(["ASIAN", "BLACK", "CAUCASIAN", "EAST_INDIAN"], label="Ethnicity") | |
mask1 = gr.CheckboxGroup(["LOWER_FACE_MASK", "FULL_FACE_MASK", "OTHER_MASK", "GLASSES", "SUNGLASSES"], label="Mask & Glasses") | |
eye1 = gr.CheckboxGroup(["LEFT", "RIGHT"], label="Eye Open") | |
facehair1 = gr.CheckboxGroup(["BEARD", "BRISTLE", "MUSTACHE", "SHAVED"], label="Facial Hair") | |
haircolor1 = gr.CheckboxGroup(["BLACK", "BLOND", "BROWN"], label="Hair Color") | |
hairtype1 = gr.CheckboxGroup(["BALD", "SHORT", "MEDIUM", "LONG"], label="Hair Type") | |
headwear1 = gr.CheckboxGroup(["B_CAP", "CAP", "HAT", "HELMET", "HOOD"], label="Head Wear") | |
activity1 = gr.CheckboxGroup(["EATING", "PHONE_RECORDING", "PHONE_USE", "SMOKING", "SEATBELT"], label="Activity") | |
with gr.Row(): | |
pitch1 = gr.Number(0, label="Pitch") | |
roll1 = gr.Number(0, label="Roll") | |
yaw1 = gr.Number(0, label="Yaw") | |
quality1 = gr.Number(0, label="Quality") | |
with gr.Column(variant="panel"): | |
gr.Markdown("<b>Image 2<b/>") | |
liveness2 = gr.CheckboxGroup(["GENUINE", "FAKE"], label="Liveness") | |
age2 = gr.Number(0, label="Age") | |
gender2 = gr.CheckboxGroup(["MALE", "FEMALE"], label="Gender") | |
emotion2 = gr.CheckboxGroup(["HAPPINESS", "ANGER", "FEAR", "NEUTRAL", "SADNESS", "SURPRISE"], label="Emotion") | |
ethnicity2 = gr.CheckboxGroup(["ASIAN", "BLACK", "CAUCASIAN", "EAST_INDIAN"], label="Ethnicity") | |
mask2 = gr.CheckboxGroup(["LOWER_FACE_MASK", "FULL_FACE_MASK", "OTHER_MASK", "GLASSES", "SUNGLASSES"], label="Mask & Glasses") | |
eye2 = gr.CheckboxGroup(["LEFT", "RIGHT"], label="Eye Open") | |
facehair2 = gr.CheckboxGroup(["BEARD", "BRISTLE", "MUSTACHE", "SHAVED"], label="Facial Hair") | |
haircolor2 = gr.CheckboxGroup(["BLACK", "BLOND", "BROWN"], label="Hair Color") | |
hairtype2 = gr.CheckboxGroup(["BALD", "SHORT", "MEDIUM", "LONG"], label="Hair Type") | |
headwear2 = gr.CheckboxGroup(["B_CAP", "CAP", "HAT", "HELMET", "HOOD"], label="Head Wear") | |
activity2 = gr.CheckboxGroup(["EATING", "PHONE_RECORDING", "PHONE_USE", "SMOKING", "SEATBELT"], label="Activity") | |
with gr.Row(): | |
pitch2 = gr.Number(0, label="Pitch") | |
roll2 = gr.Number(0, label="Roll") | |
yaw2 = gr.Number(0, label="Yaw") | |
quality2 = gr.Number(0, label="Quality") | |
compare_result_output = gr.JSON(label='Result', visible=False) | |
compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_result_output, compare_face_output, compare_result, | |
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1, | |
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2]) | |
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False) |