Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
6 |
+
from llama_index.llms.llama_cpp.llama_utils import (
|
7 |
+
messages_to_prompt,
|
8 |
+
completion_to_prompt,
|
9 |
+
)
|
10 |
+
|
11 |
+
model_url = 'https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_K_M.gguf'
|
12 |
+
llm = LlamaCPP(
|
13 |
+
# You can pass in the URL to a GGML model to download it automatically
|
14 |
+
model_url=model_url,
|
15 |
+
temperature=0.1,
|
16 |
+
max_new_tokens=256,
|
17 |
+
context_window=2048,
|
18 |
+
# kwargs to pass to __call__()
|
19 |
+
generate_kwargs={},
|
20 |
+
# kwargs to pass to __init__()
|
21 |
+
# set to at least 1 to use GPU
|
22 |
+
model_kwargs={"n_gpu_layers": 1},
|
23 |
+
# transform inputs into Llama2 format
|
24 |
+
messages_to_prompt=messages_to_prompt,
|
25 |
+
completion_to_prompt=completion_to_prompt,
|
26 |
+
verbose=True,
|
27 |
+
)
|
28 |
+
# Initialize embeddings and LLM
|
29 |
+
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
30 |
+
|
31 |
+
def initialize_index():
|
32 |
+
"""Initialize the vector store index from PDF files in the data directory"""
|
33 |
+
# Load documents from the data directory
|
34 |
+
loader = SimpleDirectoryReader(
|
35 |
+
input_dir="data",
|
36 |
+
required_exts=[".pdf"]
|
37 |
+
)
|
38 |
+
documents = loader.load_data()
|
39 |
+
|
40 |
+
# Create index
|
41 |
+
index = VectorStoreIndex.from_documents(
|
42 |
+
documents,
|
43 |
+
embed_model=embeddings,
|
44 |
+
)
|
45 |
+
|
46 |
+
# Return query engine with Llama
|
47 |
+
return index.as_query_engine(llm=llm)
|
48 |
+
|
49 |
+
# Initialize the query engine at startup
|
50 |
+
query_engine = initialize_index()
|
51 |
+
|
52 |
+
def process_query(
|
53 |
+
message: str,
|
54 |
+
history: list[tuple[str, str]],
|
55 |
+
) -> str:
|
56 |
+
"""Process a query using the RAG system"""
|
57 |
+
try:
|
58 |
+
# Get response from the query engine
|
59 |
+
response = query_engine.query(
|
60 |
+
message,
|
61 |
+
#streaming=True
|
62 |
+
)
|
63 |
+
return str(response)
|
64 |
+
except Exception as e:
|
65 |
+
return f"Error processing query: {str(e)}"
|
66 |
+
|
67 |
+
# Create the Gradio interface
|
68 |
+
demo = gr.ChatInterface(
|
69 |
+
process_query,
|
70 |
+
title="PDF Question Answering with RAG + Llama",
|
71 |
+
description="Ask questions about the content of the loaded PDF documents using Llama model",
|
72 |
+
#undo_btn="Delete Previous",
|
73 |
+
#clear_btn="Clear",
|
74 |
+
)
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch(debug=True)
|