Deploy refined v2 slogan generator with Gradio UI
Browse files- app.py +119 -270
- requirements.txt +3 -4
app.py
CHANGED
@@ -1,304 +1,153 @@
|
|
1 |
|
2 |
-
import
|
3 |
-
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer, CrossEncoder
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
FLAN_PRIMARY = os.getenv("FLAN_PRIMARY", "google/flan-t5-large")
|
11 |
-
FLAN_FALLBACK = "google/flan-t5-base"
|
12 |
-
EMBED_NAME = "sentence-transformers/all-mpnet-base-v2"
|
13 |
-
RERANK_NAME = "cross-encoder/stsb-roberta-base"
|
14 |
-
|
15 |
-
NUM_SLOGAN_SAMPLES = int(os.getenv("NUM_SLOGAN_SAMPLES", "16"))
|
16 |
-
INDEX_ROOT = os.path.join(os.path.dirname(__file__), "vector_store")
|
17 |
-
DEFAULT_MODEL_FOR_INDEX = EMBED_NAME
|
18 |
-
CSV_PATH = os.path.join(os.path.dirname(__file__), "cleaned_data.csv")
|
19 |
-
|
20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
def _model_key(name: str) -> str:
|
54 |
-
return name.replace("/", "_")
|
55 |
-
|
56 |
-
def _format_for_e5(texts, as_query=False):
|
57 |
-
prefix = "query: " if as_query else "passage: "
|
58 |
-
return [prefix + str(t) for t in texts]
|
59 |
-
|
60 |
-
def _build_memory_index_from_csv(model_name: str):
|
61 |
-
if not os.path.exists(CSV_PATH):
|
62 |
-
return None
|
63 |
-
df = pd.read_csv(CSV_PATH)
|
64 |
-
for col in ("name","tagline","description"):
|
65 |
-
if col not in df.columns: df[col] = ""
|
66 |
-
texts = df["description"].astype(str).tolist()
|
67 |
-
embedder = SentenceTransformer(model_name) if model_name != EMBED_NAME else _EMBED_MODEL
|
68 |
-
if model_name.startswith("intfloat/e5"):
|
69 |
-
texts = _format_for_e5(texts, as_query=False)
|
70 |
-
vecs = embedder.encode(texts, normalize_embeddings=True)
|
71 |
-
vecs = np.asarray(vecs, dtype=np.float32)
|
72 |
-
idx = faiss.IndexFlatIP(vecs.shape[1])
|
73 |
-
idx.add(vecs)
|
74 |
-
return idx, df[["name","tagline","description"]].copy()
|
75 |
-
|
76 |
-
def _load_index_for_model(model_name: str = DEFAULT_MODEL_FOR_INDEX):
|
77 |
-
mkey = _model_key(model_name)
|
78 |
-
if mkey in _INDEX_CACHE: return _INDEX_CACHE[mkey]
|
79 |
-
|
80 |
-
base = os.path.join(INDEX_ROOT, mkey)
|
81 |
-
idx_path = os.path.join(base, "index.faiss")
|
82 |
-
meta_path = os.path.join(base, "meta.parquet")
|
83 |
-
|
84 |
-
if os.path.exists(idx_path) and os.path.exists(meta_path):
|
85 |
-
index = faiss.read_index(idx_path)
|
86 |
-
meta = pd.read_parquet(meta_path)
|
87 |
-
_INDEX_CACHE[mkey] = (index, meta)
|
88 |
-
return _INDEX_CACHE[mkey]
|
89 |
-
|
90 |
-
# fallback: build from CSV if available
|
91 |
-
built = _build_memory_index_from_csv(model_name)
|
92 |
-
if built is not None:
|
93 |
-
_INDEX_CACHE[mkey] = built
|
94 |
-
return built
|
95 |
-
|
96 |
-
# last fallback: tiny demo
|
97 |
-
print("[WARN] FAISS & CSV missing — using tiny demo index")
|
98 |
-
demo = pd.DataFrame({
|
99 |
-
"name":["HowDidIDo","Museotainment","Movitr"],
|
100 |
-
"tagline":["Online evaluation platform","PacMan & Louvre meet","Crowdsourced video translation"],
|
101 |
-
"description":[
|
102 |
-
"Public speaking, Presentation skills and interview practice",
|
103 |
-
"Interactive AR museum tours",
|
104 |
-
"Video translation with voice and subtitles"
|
105 |
-
]
|
106 |
-
})
|
107 |
-
embedder = SentenceTransformer(model_name) if model_name != EMBED_NAME else _EMBED_MODEL
|
108 |
-
vecs = embedder.encode(demo["description"].tolist(), normalize_embeddings=True)
|
109 |
-
vecs = np.asarray(vecs, dtype=np.float32)
|
110 |
-
idx = faiss.IndexFlatIP(vecs.shape[1]); idx.add(vecs)
|
111 |
-
_INDEX_CACHE[mkey] = (idx, demo)
|
112 |
-
return _INDEX_CACHE[mkey]
|
113 |
-
|
114 |
-
# =========================
|
115 |
-
# Recommend
|
116 |
-
# =========================
|
117 |
-
def recommend(query_text: str, model_name: str = DEFAULT_MODEL_FOR_INDEX, top_k: int = 3) -> pd.DataFrame:
|
118 |
-
_ensure_models()
|
119 |
-
index, meta = _load_index_for_model(model_name)
|
120 |
-
q_inp = _format_for_e5([query_text], as_query=True) if model_name.startswith("intfloat/e5") else [query_text]
|
121 |
-
q_vec = _EMBED_MODEL.encode(q_inp, normalize_embeddings=True)
|
122 |
-
q_vec = np.asarray(q_vec, dtype=np.float32)
|
123 |
-
scores, idxs = index.search(q_vec, top_k)
|
124 |
-
out = meta.iloc[idxs[0]].copy()
|
125 |
-
out["score"] = scores[0]
|
126 |
-
for col in ("name","tagline","description"):
|
127 |
-
if col not in out.columns: out[col] = ""
|
128 |
-
cols = ["name","tagline","description","score"]
|
129 |
-
return out[cols]
|
130 |
-
|
131 |
-
# =========================
|
132 |
-
# Refined v2 – helpers
|
133 |
-
# =========================
|
134 |
BLOCK_PATTERNS = [
|
135 |
r"^[A-Z][a-z]+ [A-Z][a-z]+ (Platform|Solution|System|Application|Marketplace)$",
|
136 |
r"^[A-Z][a-z]+ [A-Z][a-z]+$",
|
137 |
r"^[A-Z][a-z]+$",
|
138 |
]
|
139 |
-
|
140 |
-
|
141 |
"ai-powered","ai powered","empower","empowering",
|
142 |
-
"artificial intelligence","machine learning","augmented reality","virtual reality"
|
143 |
-
}
|
144 |
GENERIC_WORDS = {"app","assistant","smart","ai","ml","ar","vr","decentralized","blockchain"}
|
145 |
-
MARKETING_VERBS = {"build","grow","simplify","discover","create","connect","transform","unlock","boost","learn"
|
146 |
-
BENEFIT_WORDS = {"faster","smarter","easier","better","safer","clearer"
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
152 |
|
153 |
-
def _tokens(s: str) -> List[str]: return re.findall(r"[a-z0-9]{3,}", s.lower())
|
154 |
-
def _jaccard(a: List[str], b: List[str]) -> float:
|
155 |
-
A,B=set(a),set(b); return 0.0 if not A or not B else len(A&B)/len(A|B)
|
156 |
-
def _titlecase_soft(s: str) -> str:
|
157 |
-
return " ".join(w if w.isupper() else w.capitalize() for w in s.split())
|
158 |
def _is_blocked_slogan(s: str) -> bool:
|
159 |
-
|
160 |
-
|
|
|
161 |
for pat in BLOCK_PATTERNS:
|
162 |
-
if re.match(pat,
|
163 |
-
|
164 |
-
if any(w in s_low for w in HARD_BLOCK_WORDS): return True
|
165 |
-
return s_low in GOOD_SLOGANS_TO_AVOID_DUP
|
166 |
-
|
167 |
-
def _generic_penalty(s: str) -> float:
|
168 |
-
hits=sum(1 for w in GENERIC_WORDS if w in s.lower()); return min(1.0, 0.25*hits)
|
169 |
-
def _for_penalty(s: str) -> float: return 0.3 if re.search(r"\bfor\b", s.lower()) else 0.0
|
170 |
-
|
171 |
-
def _neighbor_context(neighbors_df: pd.DataFrame) -> str:
|
172 |
-
if neighbors_df is None or neighbors_df.empty: return ""
|
173 |
-
ex=[]
|
174 |
-
for _,row in neighbors_df.head(3).iterrows():
|
175 |
-
tg=str(row.get("tagline","")).strip()
|
176 |
-
if 5<=len(tg)<=70: ex.append(f"- {tg}")
|
177 |
-
return "\n".join(ex)
|
178 |
-
|
179 |
-
def _copies_neighbor(s: str, neighbors_df: pd.DataFrame) -> bool:
|
180 |
-
if neighbors_df is None or neighbors_df.empty: return False
|
181 |
-
s_low=s.lower(); s_toks=_tokens(s_low)
|
182 |
-
for _,row in neighbors_df.iterrows():
|
183 |
-
t=str(row.get("tagline","")).strip()
|
184 |
-
if not t: continue
|
185 |
-
t_low=t.lower()
|
186 |
-
if s_low==t_low: return True
|
187 |
-
if _jaccard(s_toks,_tokens(t_low))>=0.7: return True
|
188 |
-
try:
|
189 |
-
em=SentenceTransformer(EMBED_NAME)
|
190 |
-
s_vec=em.encode([s])[0]; s_vec=s_vec/np.linalg.norm(s_vec)
|
191 |
-
for _,row in neighbors_df.head(3).iterrows():
|
192 |
-
t=str(row.get("tagline","")).strip()
|
193 |
-
if not t: continue
|
194 |
-
t_vec=em.encode([t])[0]; t_vec=t_vec/np.linalg.norm(t_vec)
|
195 |
-
if float(np.dot(s_vec,t_vec))>=0.85: return True
|
196 |
-
except: pass
|
197 |
return False
|
198 |
|
199 |
-
def
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
em=SentenceTransformer(EMBED_NAME)
|
211 |
-
neighbor_vecs=[]
|
212 |
-
if neighbors_df is not None and not neighbors_df.empty:
|
213 |
-
for _,row in neighbors_df.head(3).iterrows():
|
214 |
-
t=str(row.get("tagline","")).strip()
|
215 |
-
if t:
|
216 |
-
v=em.encode([t])[0]; neighbor_vecs.append(v/np.linalg.norm(v))
|
217 |
-
|
218 |
-
for i,s in enumerate(cands):
|
219 |
-
words=s.split()
|
220 |
-
brev=1.0-min(1.0,abs(len(words)-5)/5.0)
|
221 |
-
wl=set(w.lower() for w in words)
|
222 |
-
m_hits=len(wl & MARKETING_VERBS); b_hits=len(wl & BENEFIT_WORDS)
|
223 |
-
marketing=min(1.0,0.2*m_hits+0.2*b_hits)
|
224 |
-
g_pen=_generic_penalty(s); f_pen=_for_penalty(s)
|
225 |
-
n_pen=0.0
|
226 |
-
if neighbor_vecs:
|
227 |
-
try:
|
228 |
-
s_vec=em.encode([s])[0]; s_vec=s_vec/np.linalg.norm(s_vec)
|
229 |
-
sim_max=max(float(np.dot(s_vec,nv)) for nv in neighbor_vecs) if neighbor_vecs else 0.0
|
230 |
-
n_pen=sim_max
|
231 |
-
except: n_pen=0.0
|
232 |
-
overlap=_jaccard(q_toks,_tokens(s)); anti_copy=1.0-overlap
|
233 |
-
score=0.55*float(ce_scores[i])+0.20*brev+0.15*marketing+0.03*anti_copy-0.07*g_pen-0.03*f_pen-0.10*n_pen
|
234 |
-
results.append((s,float(score)))
|
235 |
return results
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
prompt=(
|
241 |
"You are a creative brand copywriter. Write short, original, memorable startup slogans (max 8 words).\n"
|
242 |
"Forbidden words: app, assistant, platform, solution, system, marketplace, AI, machine learning, augmented reality, virtual reality, decentralized, empower.\n"
|
243 |
-
"Focus on
|
244 |
-
"
|
245 |
-
"Description: Payments for small online stores\nSlogan: Built to Grow with Your Cart.\n\n"
|
246 |
-
"Description: Neurotech headset to boost focus\nSlogan: Train Your Brain to Win.\n\n"
|
247 |
-
"Description: Interior design suggestions with AI\nSlogan: Style That Thinks With You.\n\n"
|
248 |
-
"Bad Examples (avoid these): Innovative AI Platform / Smart App for Everyone / Empowering Small Businesses\n\n"
|
249 |
)
|
250 |
-
|
251 |
-
prompt
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
for line in txt.split("\n"):
|
258 |
-
s=_clean_slogan(line)
|
259 |
if not s: continue
|
260 |
-
if len(s.split())<2 or len(s.split())>8: continue
|
261 |
if _is_blocked_slogan(s): continue
|
262 |
-
|
263 |
-
cand.add(_titlecase_soft(s))
|
264 |
-
if not cand: return _clean_slogan(_GEN_TOK.decode(outputs[0],skip_special_tokens=True))
|
265 |
-
scored=_score_candidates(query_text,sorted(cand),neighbors_df)
|
266 |
-
if not scored: return _clean_slogan(_GEN_TOK.decode(outputs[0],skip_special_tokens=True))
|
267 |
-
scored.sort(key=lambda x:x[1],reverse=True)
|
268 |
-
return scored[0][0]
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
"AI coach for improving public speaking skills",
|
275 |
"Augmented reality app for interactive museum tours",
|
276 |
"Voice-controlled task manager for remote teams",
|
277 |
"Machine learning system for predicting crop yields",
|
278 |
-
"Platform for AI-assisted interior design suggestions"
|
279 |
]
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
with gr.Blocks(title="SloganAI — Recommendations + Slogan Generator") as demo:
|
291 |
-
gr.Markdown("## SloganAI — Top-3 Recommendations + A High-Quality Generated Slogan")
|
292 |
-
with gr.Row():
|
293 |
-
with gr.Column(scale=1):
|
294 |
-
inp=gr.Textbox(label="Enter a startup description", lines=3, placeholder="e.g., AI coach for improving public speaking skills")
|
295 |
-
gr.Examples(EXAMPLES, inputs=inp, label="One-click examples")
|
296 |
-
btn=gr.Button("Submit", variant="primary")
|
297 |
-
with gr.Column(scale=2):
|
298 |
-
out_df=gr.Dataframe(headers=["Name","Tagline","Description","Score"], label="Top 3 + Generated")
|
299 |
-
out_sg=gr.Textbox(label="Generated Slogan", interactive=False)
|
300 |
-
btn.click(fn=pipeline, inputs=inp, outputs=[out_df, out_sg])
|
301 |
|
302 |
if __name__ == "__main__":
|
303 |
-
|
304 |
-
demo.queue().launch()
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import faiss, re, torch
|
6 |
from sentence_transformers import SentenceTransformer, CrossEncoder
|
7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
|
9 |
+
# ------------------ Models ------------------
|
10 |
+
GEN_TOK = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
11 |
+
GEN_MODEL = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
GEN_MODEL = GEN_MODEL.to(DEVICE)
|
14 |
+
|
15 |
+
EMBED_MODEL = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
16 |
+
RERANKER = CrossEncoder("cross-encoder/stsb-roberta-base")
|
17 |
+
|
18 |
+
# ------------------ Dummy dataset (for demo) ------------------
|
19 |
+
data = pd.DataFrame({
|
20 |
+
"name": ["HowDidIDo", "Museotainment", "Movitr"],
|
21 |
+
"tagline": ["Online evaluation platform", "PacMan & Louvre meet", "Crowdsourced video translation"],
|
22 |
+
"description": [
|
23 |
+
"Public speaking, Presentation skills and interview practice",
|
24 |
+
"Interactive AR museum tours",
|
25 |
+
"Video translation with voice and subtitles"
|
26 |
+
]
|
27 |
+
})
|
28 |
+
|
29 |
+
# Build FAISS index
|
30 |
+
data_vecs = EMBED_MODEL.encode(data["description"].tolist())
|
31 |
+
faiss.normalize_L2(data_vecs)
|
32 |
+
index = faiss.IndexFlatIP(data_vecs.shape[1])
|
33 |
+
index.add(data_vecs)
|
34 |
+
|
35 |
+
def recommend(query, top_k=3):
|
36 |
+
query_vec = EMBED_MODEL.encode([query])
|
37 |
+
faiss.normalize_L2(query_vec)
|
38 |
+
scores, idx = index.search(query_vec, top_k)
|
39 |
+
results = data.iloc[idx[0]].copy()
|
40 |
+
results["score"] = scores[0]
|
41 |
+
return results[["name", "tagline", "description", "score"]]
|
42 |
+
|
43 |
+
# ------------------ Helpers ------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
BLOCK_PATTERNS = [
|
45 |
r"^[A-Z][a-z]+ [A-Z][a-z]+ (Platform|Solution|System|Application|Marketplace)$",
|
46 |
r"^[A-Z][a-z]+ [A-Z][a-z]+$",
|
47 |
r"^[A-Z][a-z]+$",
|
48 |
]
|
49 |
+
|
50 |
+
HARD_BLOCK_WORDS = {"platform","solution","system","application","marketplace",
|
51 |
"ai-powered","ai powered","empower","empowering",
|
52 |
+
"artificial intelligence","machine learning","augmented reality","virtual reality"}
|
|
|
53 |
GENERIC_WORDS = {"app","assistant","smart","ai","ml","ar","vr","decentralized","blockchain"}
|
54 |
+
MARKETING_VERBS = {"build","grow","simplify","discover","create","connect","transform","unlock","boost","learn"}
|
55 |
+
BENEFIT_WORDS = {"faster","smarter","easier","better","safer","clearer"}
|
56 |
+
|
57 |
+
def _clean_slogan(text: str, max_words: int = 8) -> str:
|
58 |
+
text = text.strip().split("\n")[0]
|
59 |
+
text = re.sub(r"[\"“”‘’]", "", text)
|
60 |
+
text = re.sub(r"\s+", " ", text).strip()
|
61 |
+
words = text.split()
|
62 |
+
if len(words) > max_words:
|
63 |
+
text = " ".join(words[:max_words])
|
64 |
+
return text
|
65 |
|
|
|
|
|
|
|
|
|
|
|
66 |
def _is_blocked_slogan(s: str) -> bool:
|
67 |
+
s_low = s.lower()
|
68 |
+
if any(w in s_low for w in HARD_BLOCK_WORDS):
|
69 |
+
return True
|
70 |
for pat in BLOCK_PATTERNS:
|
71 |
+
if re.match(pat, s.strip()):
|
72 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
return False
|
74 |
|
75 |
+
def _score_candidates(query: str, cands: list) -> list:
|
76 |
+
if not cands:
|
77 |
+
return []
|
78 |
+
ce_scores = np.asarray(RERANKER.predict([(query, s) for s in cands]), dtype=np.float32) / 5.0
|
79 |
+
results = []
|
80 |
+
for i, s in enumerate(cands):
|
81 |
+
words = s.split()
|
82 |
+
brevity = 1.0 - min(1.0, abs(len(words) - 5) / 5.0)
|
83 |
+
marketing = 0.2*len(set(words) & MARKETING_VERBS) + 0.2*len(set(words) & BENEFIT_WORDS)
|
84 |
+
score = 0.6*float(ce_scores[i]) + 0.2*brevity + 0.2*marketing
|
85 |
+
results.append((s, float(score)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return results
|
87 |
|
88 |
+
# ------------------ Generator ------------------
|
89 |
+
def generate_slogan(query_text: str, n_samples: int = 16) -> str:
|
90 |
+
prompt = (
|
|
|
91 |
"You are a creative brand copywriter. Write short, original, memorable startup slogans (max 8 words).\n"
|
92 |
"Forbidden words: app, assistant, platform, solution, system, marketplace, AI, machine learning, augmented reality, virtual reality, decentralized, empower.\n"
|
93 |
+
"Focus on benefits and vivid verbs. Do not copy the description.\n\n"
|
94 |
+
f"Description: {query_text}\nSlogans:"
|
|
|
|
|
|
|
|
|
95 |
)
|
96 |
+
|
97 |
+
input_ids = GEN_TOK(prompt, return_tensors="pt").input_ids.to(DEVICE)
|
98 |
+
outputs = GEN_MODEL.generate(
|
99 |
+
input_ids,
|
100 |
+
max_new_tokens=24,
|
101 |
+
do_sample=True,
|
102 |
+
top_k=60,
|
103 |
+
top_p=0.92,
|
104 |
+
temperature=1.2,
|
105 |
+
num_return_sequences=n_samples
|
106 |
+
)
|
107 |
+
|
108 |
+
raw_cands = [GEN_TOK.decode(o, skip_special_tokens=True) for o in outputs]
|
109 |
+
|
110 |
+
cand_set = set()
|
111 |
+
for txt in raw_cands:
|
112 |
for line in txt.split("\n"):
|
113 |
+
s = _clean_slogan(line)
|
114 |
if not s: continue
|
115 |
+
if len(s.split()) < 2 or len(s.split()) > 8: continue
|
116 |
if _is_blocked_slogan(s): continue
|
117 |
+
cand_set.add(s.capitalize())
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
if not cand_set:
|
120 |
+
return "Fresh Ideas, Built To Scale"
|
121 |
+
|
122 |
+
scored = _score_candidates(query_text, sorted(cand_set))
|
123 |
+
scored.sort(key=lambda x: x[1], reverse=True)
|
124 |
+
return scored[0][0] if scored else "Fresh Ideas, Built To Scale"
|
125 |
+
|
126 |
+
# ------------------ Pipeline ------------------
|
127 |
+
def pipeline(user_input):
|
128 |
+
recs = recommend(user_input, top_k=3)
|
129 |
+
slogan = generate_slogan(user_input)
|
130 |
+
recs = recs.reset_index(drop=True)
|
131 |
+
recs.loc[len(recs)] = ["Generated Slogan", slogan, user_input, np.nan]
|
132 |
+
return recs
|
133 |
+
|
134 |
+
# ------------------ Gradio UI ------------------
|
135 |
+
examples = [
|
136 |
"AI coach for improving public speaking skills",
|
137 |
"Augmented reality app for interactive museum tours",
|
138 |
"Voice-controlled task manager for remote teams",
|
139 |
"Machine learning system for predicting crop yields",
|
140 |
+
"Platform for AI-assisted interior design suggestions"
|
141 |
]
|
142 |
|
143 |
+
demo = gr.Interface(
|
144 |
+
fn=pipeline,
|
145 |
+
inputs=gr.Textbox(label="Enter a startup description"),
|
146 |
+
outputs=gr.Dataframe(headers=["Name", "Tagline", "Description", "Score"]),
|
147 |
+
examples=examples,
|
148 |
+
title="SloganAI – Startup Recommendation & Slogan Generator",
|
149 |
+
description="Enter a startup idea and get top-3 similar startups + 1 generated slogan."
|
150 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
+
demo.launch()
|
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
-
gradio
|
2 |
-
transformers
|
3 |
-
sentence-transformers
|
4 |
faiss-cpu
|
5 |
pandas
|
6 |
numpy
|
7 |
torch
|
8 |
-
pyarrow
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
faiss-cpu
|
5 |
pandas
|
6 |
numpy
|
7 |
torch
|
|