Deploy Space: full FAISS recommend + advanced slogan generator (Refined v2) with vector_store
Browse files- .gitattributes +2 -34
- app.py +330 -92
- requirements.txt +1 -0
.gitattributes
CHANGED
@@ -1,35 +1,3 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.faiss filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,153 +1,391 @@
|
|
1 |
|
2 |
-
import
|
3 |
-
import pandas as pd
|
4 |
import numpy as np
|
5 |
-
import
|
|
|
|
|
|
|
|
|
6 |
from sentence_transformers import SentenceTransformer, CrossEncoder
|
7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
BLOCK_PATTERNS = [
|
45 |
r"^[A-Z][a-z]+ [A-Z][a-z]+ (Platform|Solution|System|Application|Marketplace)$",
|
46 |
r"^[A-Z][a-z]+ [A-Z][a-z]+$",
|
47 |
r"^[A-Z][a-z]+$",
|
48 |
]
|
49 |
-
|
50 |
-
|
51 |
"ai-powered","ai powered","empower","empowering",
|
52 |
-
"artificial intelligence","machine learning","augmented reality","virtual reality"
|
|
|
53 |
GENERIC_WORDS = {"app","assistant","smart","ai","ml","ar","vr","decentralized","blockchain"}
|
54 |
-
MARKETING_VERBS = {"build","grow","simplify","discover","create","connect","transform","unlock","boost","learn"}
|
55 |
-
BENEFIT_WORDS = {"faster","smarter","easier","better","safer","clearer"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def _clean_slogan(text: str, max_words: int = 8) -> str:
|
58 |
text = text.strip().split("\n")[0]
|
59 |
text = re.sub(r"[\"“”‘’]", "", text)
|
60 |
text = re.sub(r"\s+", " ", text).strip()
|
|
|
61 |
words = text.split()
|
62 |
if len(words) > max_words:
|
63 |
text = " ".join(words[:max_words])
|
64 |
return text
|
65 |
|
66 |
-
def
|
67 |
-
s_low = s.lower()
|
68 |
-
if any(w in s_low for w in HARD_BLOCK_WORDS):
|
69 |
-
return True
|
70 |
-
for pat in BLOCK_PATTERNS:
|
71 |
-
if re.match(pat, s.strip()):
|
72 |
-
return True
|
73 |
-
return False
|
74 |
-
|
75 |
-
def _score_candidates(query: str, cands: list) -> list:
|
76 |
if not cands:
|
77 |
return []
|
78 |
-
ce_scores = np.asarray(
|
|
|
79 |
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
for i, s in enumerate(cands):
|
81 |
words = s.split()
|
82 |
-
brevity
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
results.append((s, float(score)))
|
86 |
return results
|
87 |
|
88 |
-
|
89 |
-
|
|
|
90 |
prompt = (
|
91 |
"You are a creative brand copywriter. Write short, original, memorable startup slogans (max 8 words).\n"
|
92 |
"Forbidden words: app, assistant, platform, solution, system, marketplace, AI, machine learning, augmented reality, virtual reality, decentralized, empower.\n"
|
93 |
-
"Focus on benefits and vivid verbs. Do not copy the description.\n\n"
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
|
|
|
|
|
|
96 |
|
97 |
-
input_ids =
|
98 |
-
outputs =
|
99 |
input_ids,
|
100 |
max_new_tokens=24,
|
101 |
do_sample=True,
|
102 |
top_k=60,
|
103 |
top_p=0.92,
|
104 |
temperature=1.2,
|
105 |
-
num_return_sequences=n_samples
|
|
|
106 |
)
|
107 |
-
|
108 |
-
raw_cands = [GEN_TOK.decode(o, skip_special_tokens=True) for o in outputs]
|
109 |
|
110 |
cand_set = set()
|
111 |
for txt in raw_cands:
|
112 |
for line in txt.split("\n"):
|
113 |
s = _clean_slogan(line)
|
114 |
-
if not s:
|
115 |
-
|
116 |
-
if
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
if not cand_set:
|
120 |
-
return
|
121 |
|
122 |
-
scored = _score_candidates(query_text, sorted(cand_set))
|
123 |
-
scored
|
124 |
-
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
recs = recommend(user_input, top_k=3)
|
129 |
-
slogan = generate_slogan(user_input)
|
130 |
-
recs = recs.reset_index(drop=True)
|
131 |
-
recs.loc[len(recs)] = ["Generated Slogan", slogan, user_input, np.nan]
|
132 |
-
return recs
|
133 |
|
134 |
-
#
|
135 |
-
|
|
|
|
|
136 |
"AI coach for improving public speaking skills",
|
137 |
"Augmented reality app for interactive museum tours",
|
138 |
"Voice-controlled task manager for remote teams",
|
139 |
"Machine learning system for predicting crop yields",
|
140 |
-
"Platform for AI-assisted interior design suggestions"
|
141 |
]
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
-
|
|
|
|
1 |
|
2 |
+
import os, re, json
|
|
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import gradio as gr
|
6 |
+
import faiss
|
7 |
+
import torch
|
8 |
+
from typing import List
|
9 |
from sentence_transformers import SentenceTransformer, CrossEncoder
|
10 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
11 |
|
12 |
+
# =========================
|
13 |
+
# Global Config
|
14 |
+
# =========================
|
15 |
+
# מודלים (אותו סטינג כמו במחברת; יש Fallback ל-base אם ה-Large לא נכנס לזיכרון)
|
16 |
+
FLAN_PRIMARY = os.getenv("FLAN_PRIMARY", "google/flan-t5-large")
|
17 |
+
FLAN_FALLBACK = "google/flan-t5-base"
|
18 |
+
EMBED_NAME = "sentence-transformers/all-mpnet-base-v2"
|
19 |
+
RERANK_NAME = "cross-encoder/stsb-roberta-base"
|
20 |
+
|
21 |
+
NUM_SLOGAN_SAMPLES = int(os.getenv("NUM_SLOGAN_SAMPLES", "16")) # אפשר להעלות ל-32 אם יש GPU
|
22 |
+
INDEX_ROOT = os.path.join(os.path.dirname(__file__), "vector_store") # איפה ששמנו את האינדקסים
|
23 |
+
DEFAULT_MODEL_FOR_INDEX = EMBED_NAME
|
24 |
+
|
25 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
|
27 |
+
# =========================
|
28 |
+
# Lazy model loading (first call only)
|
29 |
+
# =========================
|
30 |
+
_GEN_TOK = None
|
31 |
+
_GEN_MODEL = None
|
32 |
+
_EMBED_MODEL = None
|
33 |
+
_RERANKER = None
|
34 |
+
|
35 |
+
def _ensure_models():
|
36 |
+
global _GEN_TOK, _GEN_MODEL, _EMBED_MODEL, _RERANKER
|
37 |
+
if _EMBED_MODEL is None:
|
38 |
+
_EMBED_MODEL = SentenceTransformer(EMBED_NAME)
|
39 |
+
if _RERANKER is None:
|
40 |
+
_RERANKER = CrossEncoder(RERANK_NAME)
|
41 |
+
|
42 |
+
if _GEN_MODEL is None:
|
43 |
+
try:
|
44 |
+
tok = AutoTokenizer.from_pretrained(FLAN_PRIMARY)
|
45 |
+
mdl = AutoModelForSeq2SeqLM.from_pretrained(FLAN_PRIMARY)
|
46 |
+
_GEN_TOK, _GEN_MODEL = tok, mdl.to(DEVICE)
|
47 |
+
print(f"[INFO] Loaded generator: {FLAN_PRIMARY}")
|
48 |
+
except Exception as e:
|
49 |
+
print(f"[WARN] Failed to load {FLAN_PRIMARY}. Falling back to {FLAN_FALLBACK}. Error: {e}")
|
50 |
+
tok = AutoTokenizer.from_pretrained(FLAN_FALLBACK)
|
51 |
+
mdl = AutoModelForSeq2SeqLM.from_pretrained(FLAN_FALLBACK)
|
52 |
+
_GEN_TOK, _GEN_MODEL = tok, mdl.to(DEVICE)
|
53 |
+
print(f"[INFO] Loaded generator: {FLAN_FALLBACK}")
|
54 |
+
|
55 |
+
# =========================
|
56 |
+
# Index cache (so we don't read multiple times)
|
57 |
+
# =========================
|
58 |
+
_INDEX_CACHE = {} # model_key -> (faiss_index, meta_df)
|
59 |
+
|
60 |
+
def _model_key(name: str) -> str:
|
61 |
+
return name.replace("/", "_")
|
62 |
+
|
63 |
+
def _format_for_e5(texts, as_query=False):
|
64 |
+
prefix = "query: " if as_query else "passage: "
|
65 |
+
return [prefix + str(t) for t in texts]
|
66 |
+
|
67 |
+
def _load_index_for_model(model_name: str = DEFAULT_MODEL_FOR_INDEX):
|
68 |
+
"""Load FAISS index + meta once for a given model."""
|
69 |
+
mkey = _model_key(model_name)
|
70 |
+
if mkey in _INDEX_CACHE:
|
71 |
+
return _INDEX_CACHE[mkey]
|
72 |
+
|
73 |
+
base = os.path.join(INDEX_ROOT, mkey)
|
74 |
+
idx_path = os.path.join(base, "index.faiss")
|
75 |
+
meta_path = os.path.join(base, "meta.parquet")
|
76 |
+
|
77 |
+
if not (os.path.exists(idx_path) and os.path.exists(meta_path)):
|
78 |
+
# fallback: tiny demo index (3 rows) if user didn't push vector_store
|
79 |
+
print(f"[WARN] Missing index for {model_name}. Using tiny demo in-memory index.")
|
80 |
+
demo = pd.DataFrame({
|
81 |
+
"name": ["HowDidIDo", "Museotainment", "Movitr"],
|
82 |
+
"tagline": ["Online evaluation platform", "PacMan & Louvre meet", "Crowdsourced video translation"],
|
83 |
+
"description": [
|
84 |
+
"Public speaking, Presentation skills and interview practice",
|
85 |
+
"Interactive AR museum tours",
|
86 |
+
"Video translation with voice and subtitles"
|
87 |
+
]
|
88 |
+
})
|
89 |
+
model = SentenceTransformer(model_name)
|
90 |
+
vecs = model.encode(demo["description"].tolist(), normalize_embeddings=True)
|
91 |
+
dim = vecs.shape[1]
|
92 |
+
index = faiss.IndexFlatIP(dim)
|
93 |
+
index.add(np.asarray(vecs, dtype=np.float32))
|
94 |
+
_INDEX_CACHE[mkey] = (index, demo)
|
95 |
+
return _INDEX_CACHE[mkey]
|
96 |
+
|
97 |
+
index = faiss.read_index(idx_path)
|
98 |
+
meta_df = pd.read_parquet(meta_path)
|
99 |
+
_INDEX_CACHE[mkey] = (index, meta_df)
|
100 |
+
return _INDEX_CACHE[mkey]
|
101 |
+
|
102 |
+
# =========================
|
103 |
+
# Recommendation (top-3) using FAISS index you generated
|
104 |
+
# =========================
|
105 |
+
def recommend(query_text: str, model_name: str = DEFAULT_MODEL_FOR_INDEX, top_k: int = 3) -> pd.DataFrame:
|
106 |
+
_ensure_models()
|
107 |
+
index, meta = _load_index_for_model(model_name)
|
108 |
+
|
109 |
+
# format for E5 if needed
|
110 |
+
if model_name.startswith("intfloat/e5"):
|
111 |
+
q_inp = _format_for_e5([query_text], as_query=True)
|
112 |
+
else:
|
113 |
+
q_inp = [query_text]
|
114 |
+
|
115 |
+
q_vec = _EMBED_MODEL.encode(q_inp, normalize_embeddings=True)
|
116 |
+
q_vec = np.asarray(q_vec, dtype=np.float32)
|
117 |
+
scores, idxs = index.search(q_vec, top_k)
|
118 |
+
scores, idxs = scores[0], idxs[0]
|
119 |
+
out = meta.iloc[idxs].copy()
|
120 |
+
out["score"] = scores
|
121 |
+
# make sure columns exist in output (name, tagline, description)
|
122 |
+
cols = [c for c in ["row_id","name","tagline","description","score"] if c in out.columns or c=="score"]
|
123 |
+
return out[cols] if "score" in out.columns else out
|
124 |
+
|
125 |
+
# =========================
|
126 |
+
# Advanced Slogan Generator (your Refined v2 logic)
|
127 |
+
# =========================
|
128 |
BLOCK_PATTERNS = [
|
129 |
r"^[A-Z][a-z]+ [A-Z][a-z]+ (Platform|Solution|System|Application|Marketplace)$",
|
130 |
r"^[A-Z][a-z]+ [A-Z][a-z]+$",
|
131 |
r"^[A-Z][a-z]+$",
|
132 |
]
|
133 |
+
HARD_BLOCK_WORDS = {
|
134 |
+
"platform","solution","system","application","marketplace",
|
135 |
"ai-powered","ai powered","empower","empowering",
|
136 |
+
"artificial intelligence","machine learning","augmented reality","virtual reality",
|
137 |
+
}
|
138 |
GENERIC_WORDS = {"app","assistant","smart","ai","ml","ar","vr","decentralized","blockchain"}
|
139 |
+
MARKETING_VERBS = {"build","grow","simplify","discover","create","connect","transform","unlock","boost","learn","move","clarify"}
|
140 |
+
BENEFIT_WORDS = {"faster","smarter","easier","better","safer","clearer","stronger","together","confidently","simply","instantly"}
|
141 |
+
GOOD_SLOGANS_TO_AVOID_DUP = {
|
142 |
+
"smarter care, faster decisions",
|
143 |
+
"checkout built for small brands",
|
144 |
+
"less guessing. more healing.",
|
145 |
+
"built to grow with your cart.",
|
146 |
+
"stand tall. feel better.",
|
147 |
+
"train your brain to win.",
|
148 |
+
"your body. your algorithm.",
|
149 |
+
"play smarter. grow brighter.",
|
150 |
+
"style that thinks with you."
|
151 |
+
}
|
152 |
+
|
153 |
+
def _tokens(s: str) -> List[str]:
|
154 |
+
return re.findall(r"[a-z0-9]{3,}", s.lower())
|
155 |
+
|
156 |
+
def _jaccard(a: List[str], b: List[str]) -> float:
|
157 |
+
A, B = set(a), set(b)
|
158 |
+
return 0.0 if not A or not B else len(A & B) / len(A | B)
|
159 |
+
|
160 |
+
def _titlecase_soft(s: str) -> str:
|
161 |
+
out = []
|
162 |
+
for w in s.split():
|
163 |
+
out.append(w if w.isupper() else w.capitalize())
|
164 |
+
return " ".join(out)
|
165 |
+
|
166 |
+
def _is_blocked_slogan(s: str) -> bool:
|
167 |
+
if not s: return True
|
168 |
+
s_strip = s.strip()
|
169 |
+
for pat in BLOCK_PATTERNS:
|
170 |
+
if re.match(pat, s_strip):
|
171 |
+
return True
|
172 |
+
s_low = s_strip.lower()
|
173 |
+
for w in HARD_BLOCK_WORDS:
|
174 |
+
if w in s_low:
|
175 |
+
return True
|
176 |
+
if s_low in GOOD_SLOGANS_TO_AVOID_DUP:
|
177 |
+
return True
|
178 |
+
return False
|
179 |
+
|
180 |
+
def _generic_penalty(s: str) -> float:
|
181 |
+
hits = sum(1 for w in GENERIC_WORDS if w in s.lower())
|
182 |
+
return min(1.0, 0.25 * hits)
|
183 |
+
|
184 |
+
def _for_penalty(s: str) -> float:
|
185 |
+
return 0.3 if re.search(r"\bfor\b", s.lower()) else 0.0
|
186 |
+
|
187 |
+
def _neighbor_context(neighbors_df: pd.DataFrame) -> str:
|
188 |
+
if neighbors_df is None or neighbors_df.empty:
|
189 |
+
return ""
|
190 |
+
examples = []
|
191 |
+
for _, row in neighbors_df.head(3).iterrows():
|
192 |
+
tg = str(row.get("tagline", "")).strip()
|
193 |
+
if 5 <= len(tg) <= 70:
|
194 |
+
examples.append(f"- {tg}")
|
195 |
+
return "\n".join(examples)
|
196 |
+
|
197 |
+
def _copies_neighbor(s: str, neighbors_df: pd.DataFrame) -> bool:
|
198 |
+
if neighbors_df is None or neighbors_df.empty:
|
199 |
+
return False
|
200 |
+
s_low = s.lower()
|
201 |
+
s_toks = _tokens(s_low)
|
202 |
+
for _, row in neighbors_df.iterrows():
|
203 |
+
t = str(row.get("tagline", "")).strip()
|
204 |
+
if not t:
|
205 |
+
continue
|
206 |
+
t_low = t.lower()
|
207 |
+
if s_low == t_low:
|
208 |
+
return True
|
209 |
+
if _jaccard(s_toks, _tokens(t_low)) >= 0.7:
|
210 |
+
return True
|
211 |
+
try:
|
212 |
+
s_vec = _EMBED_MODEL.encode([s])[0]; s_vec = s_vec / np.linalg.norm(s_vec)
|
213 |
+
for _, row in neighbors_df.head(3).iterrows():
|
214 |
+
t = str(row.get("tagline", "")).strip()
|
215 |
+
if not t: continue
|
216 |
+
t_vec = _EMBED_MODEL.encode([t])[0]; t_vec = t_vec / np.linalg.norm(t_vec)
|
217 |
+
if float(np.dot(s_vec, t_vec)) >= 0.85:
|
218 |
+
return True
|
219 |
+
except Exception:
|
220 |
+
pass
|
221 |
+
return False
|
222 |
|
223 |
def _clean_slogan(text: str, max_words: int = 8) -> str:
|
224 |
text = text.strip().split("\n")[0]
|
225 |
text = re.sub(r"[\"“”‘’]", "", text)
|
226 |
text = re.sub(r"\s+", " ", text).strip()
|
227 |
+
text = re.sub(r"^\W+|\W+$", "", text)
|
228 |
words = text.split()
|
229 |
if len(words) > max_words:
|
230 |
text = " ".join(words[:max_words])
|
231 |
return text
|
232 |
|
233 |
+
def _score_candidates(query: str, cands: List[str], neighbors_df: pd.DataFrame) -> List[tuple]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
if not cands:
|
235 |
return []
|
236 |
+
ce_scores = np.asarray(_RERANKER.predict([(query, s) for s in cands]), dtype=np.float32) / 5.0
|
237 |
+
q_toks = _tokens(query)
|
238 |
results = []
|
239 |
+
|
240 |
+
neighbor_vecs = []
|
241 |
+
if neighbors_df is not None and not neighbors_df.empty:
|
242 |
+
for _, row in neighbors_df.head(3).iterrows():
|
243 |
+
t = str(row.get("tagline","")).strip()
|
244 |
+
if t:
|
245 |
+
v = _EMBED_MODEL.encode([t])[0]
|
246 |
+
neighbor_vecs.append(v / np.linalg.norm(v))
|
247 |
+
|
248 |
for i, s in enumerate(cands):
|
249 |
words = s.split()
|
250 |
+
brevity = 1.0 - min(1.0, abs(len(words) - 5) / 5.0) # best ~5 words
|
251 |
+
wl = set(w.lower() for w in words)
|
252 |
+
m_hits = len(wl & MARKETING_VERBS)
|
253 |
+
b_hits = len(wl & BENEFIT_WORDS)
|
254 |
+
marketing = min(1.0, 0.2*m_hits + 0.2*b_hits)
|
255 |
+
g_pen = _generic_penalty(s)
|
256 |
+
f_pen = _for_penalty(s)
|
257 |
+
|
258 |
+
n_pen = 0.0
|
259 |
+
if neighbor_vecs:
|
260 |
+
try:
|
261 |
+
s_vec = _EMBED_MODEL.encode([s])[0]; s_vec = s_vec / np.linalg.norm(s_vec)
|
262 |
+
sim_max = max(float(np.dot(s_vec, nv)) for nv in neighbor_vecs) if neighbor_vecs else 0.0
|
263 |
+
n_pen = sim_max
|
264 |
+
except Exception:
|
265 |
+
n_pen = 0.0
|
266 |
+
|
267 |
+
overlap = _jaccard(q_toks, _tokens(s))
|
268 |
+
anti_copy = 1.0 - overlap
|
269 |
+
|
270 |
+
score = (
|
271 |
+
0.55*float(ce_scores[i]) +
|
272 |
+
0.20*brevity +
|
273 |
+
0.15*marketing +
|
274 |
+
0.03*anti_copy -
|
275 |
+
0.07*g_pen -
|
276 |
+
0.03*f_pen -
|
277 |
+
0.10*n_pen
|
278 |
+
)
|
279 |
results.append((s, float(score)))
|
280 |
return results
|
281 |
|
282 |
+
def generate_slogan(query_text: str, neighbors_df: pd.DataFrame = None, n_samples: int = NUM_SLOGAN_SAMPLES) -> str:
|
283 |
+
_ensure_models()
|
284 |
+
ctx = _neighbor_context(neighbors_df)
|
285 |
prompt = (
|
286 |
"You are a creative brand copywriter. Write short, original, memorable startup slogans (max 8 words).\n"
|
287 |
"Forbidden words: app, assistant, platform, solution, system, marketplace, AI, machine learning, augmented reality, virtual reality, decentralized, empower.\n"
|
288 |
+
"Focus on clear benefits and vivid verbs. Do not copy the description. Return ONLY a list, one slogan per line.\n\n"
|
289 |
+
"Good Examples:\n"
|
290 |
+
"Description: AI assistant for doctors to prioritize patient cases\n"
|
291 |
+
"Slogan: Less Guessing. More Healing.\n\n"
|
292 |
+
"Description: Payments for small online stores\n"
|
293 |
+
"Slogan: Built to Grow with Your Cart.\n\n"
|
294 |
+
"Description: Neurotech headset to boost focus\n"
|
295 |
+
"Slogan: Train Your Brain to Win.\n\n"
|
296 |
+
"Description: Interior design suggestions with AI\n"
|
297 |
+
"Slogan: Style That Thinks With You.\n\n"
|
298 |
+
"Bad Examples (avoid these): Innovative AI Platform / Smart App for Everyone / Empowering Small Businesses\n\n"
|
299 |
)
|
300 |
+
if ctx:
|
301 |
+
prompt += f"Similar taglines (style only):\n{ctx}\n\n"
|
302 |
+
prompt += f"Description: {query_text}\nSlogans:"
|
303 |
|
304 |
+
input_ids = _GEN_TOK(prompt, return_tensors="pt").input_ids.to(DEVICE)
|
305 |
+
outputs = _GEN_MODEL.generate(
|
306 |
input_ids,
|
307 |
max_new_tokens=24,
|
308 |
do_sample=True,
|
309 |
top_k=60,
|
310 |
top_p=0.92,
|
311 |
temperature=1.2,
|
312 |
+
num_return_sequences=n_samples,
|
313 |
+
repetition_penalty=1.08
|
314 |
)
|
315 |
+
raw_cands = [_GEN_TOK.decode(o, skip_special_tokens=True) for o in outputs]
|
|
|
316 |
|
317 |
cand_set = set()
|
318 |
for txt in raw_cands:
|
319 |
for line in txt.split("\n"):
|
320 |
s = _clean_slogan(line)
|
321 |
+
if not s:
|
322 |
+
continue
|
323 |
+
if len(s.split()) < 2 or len(s.split()) > 8:
|
324 |
+
continue
|
325 |
+
if _is_blocked_slogan(s):
|
326 |
+
continue
|
327 |
+
if _copies_neighbor(s, neighbors_df):
|
328 |
+
continue
|
329 |
+
cand_set.add(_titlecase_soft(s))
|
330 |
|
331 |
if not cand_set:
|
332 |
+
return _clean_slogan(_GEN_TOK.decode(outputs[0], skip_special_tokens=True))
|
333 |
|
334 |
+
scored = _score_candidates(query_text, sorted(cand_set), neighbors_df)
|
335 |
+
if not scored:
|
336 |
+
return _clean_slogan(_GEN_TOK.decode(outputs[0], skip_special_tokens=True))
|
337 |
|
338 |
+
scored.sort(key=lambda x: x[1], reverse=True)
|
339 |
+
return scored[0][0]
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
# =========================
|
342 |
+
# Gradio Pipeline
|
343 |
+
# =========================
|
344 |
+
EXAMPLES = [
|
345 |
"AI coach for improving public speaking skills",
|
346 |
"Augmented reality app for interactive museum tours",
|
347 |
"Voice-controlled task manager for remote teams",
|
348 |
"Machine learning system for predicting crop yields",
|
349 |
+
"Platform for AI-assisted interior design suggestions",
|
350 |
]
|
351 |
|
352 |
+
def pipeline(user_input: str):
|
353 |
+
# 1) Top-3 recommendations from your FAISS index (mpnet by default)
|
354 |
+
recs = recommend(user_input, model_name=DEFAULT_MODEL_FOR_INDEX, top_k=3)
|
355 |
+
|
356 |
+
# 2) Generate slogan using the neighbors as style context
|
357 |
+
slogan = generate_slogan(user_input, neighbors_df=recs, n_samples=NUM_SLOGAN_SAMPLES)
|
358 |
+
|
359 |
+
# 3) Append the generated item as the 4th row
|
360 |
+
recs = recs.reset_index(drop=True)
|
361 |
+
# Ensure columns exist
|
362 |
+
if "name" not in recs.columns: recs["name"] = ""
|
363 |
+
if "tagline" not in recs.columns: recs["tagline"] = ""
|
364 |
+
if "description" not in recs.columns: recs["description"] = ""
|
365 |
+
|
366 |
+
recs.loc[len(recs)] = {
|
367 |
+
"row_id": np.nan,
|
368 |
+
"name": "Synthetic Example",
|
369 |
+
"tagline": slogan,
|
370 |
+
"description": user_input,
|
371 |
+
"score": np.nan
|
372 |
+
}
|
373 |
+
# Second output: the slogan itself (visible headline)
|
374 |
+
return recs[["name","tagline","description","score"]], slogan
|
375 |
+
|
376 |
+
with gr.Blocks(title="SloganAI — Recommendations + Slogan Generator") as demo:
|
377 |
+
gr.Markdown("## SloganAI — Top-3 Recommendations + A High-Quality Generated Slogan\nEnter a startup idea, click **Submit**, or try an example.")
|
378 |
+
with gr.Row():
|
379 |
+
with gr.Column(scale=1):
|
380 |
+
inp = gr.Textbox(label="Enter a startup description", lines=3, placeholder="e.g., AI coach for improving public speaking skills")
|
381 |
+
ex = gr.Examples(EXAMPLES, inputs=inp, label="One‑click examples")
|
382 |
+
btn = gr.Button("Submit", variant="primary")
|
383 |
+
with gr.Column(scale=2):
|
384 |
+
out_df = gr.Dataframe(headers=["Name","Tagline","Description","Score"], label="Top 3 + Generated")
|
385 |
+
out_sg = gr.Textbox(label="Generated Slogan", interactive=False)
|
386 |
+
|
387 |
+
btn.click(fn=pipeline, inputs=inp, outputs=[out_df, out_sg])
|
388 |
|
389 |
if __name__ == "__main__":
|
390 |
+
_ensure_models()
|
391 |
+
demo.queue().launch()
|
requirements.txt
CHANGED
@@ -5,3 +5,4 @@ faiss-cpu
|
|
5 |
pandas
|
6 |
numpy
|
7 |
torch
|
|
|
|
5 |
pandas
|
6 |
numpy
|
7 |
torch
|
8 |
+
pyarrow
|