|
import gradio as gr |
|
import tensorflow as tf |
|
from SpaceGen_preprocessing import * |
|
from utils import * |
|
|
|
|
|
model_path = "SpaceGen_Large.keras" |
|
model = tf.keras.models.load_model(model_path) |
|
|
|
|
|
def fix_space(text): |
|
text = clean_sentence(text) |
|
X = text_to_X(text) |
|
predictions = model.predict(X, verbose=0) |
|
predicted_labels = [] |
|
for pred in predictions[0]: |
|
predicted_labels.append(1 if pred[1] > .5 else 0) |
|
fixed_text = insert_spaces(text.replace(' ',''), find_indices(predicted_labels)) |
|
return fixed_text |
|
|
|
default_text = "T hel ittlegi rlra nthro ughth epa rkc has ing abut terfly." |
|
|
|
description = ( |
|
"SpaceGen is an academic project developed by Asaf Delmedigo and Romi Zarchi " |
|
"during their graduate studies in Neuroscience and Data Science.\n" |
|
"It demonstrates the use of an LSTM neural network for automatic detection " |
|
"and correction of missing spaces in text.\n" |
|
"Currently, the model supports English text only.\n" |
|
"Feedback is welcome at: [email protected]" |
|
) |
|
|
|
demo = gr.Interface( |
|
fn=fix_space, |
|
inputs=gr.Textbox(label="Input Text", value=default_text), |
|
outputs="text", |
|
title="SpaceGen – Text Space Correction with LSTM", |
|
description=description |
|
) |
|
|
|
demo.launch() |
|
|