|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import os |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from transformers import pipeline |
|
from diffusers import StableDiffusionDepth2ImgPipeline |
|
|
|
|
|
model_id_depth = "depth-anything/Depth-Anything-V2-Large-hf" |
|
if torch.cuda.is_available(): |
|
pipe_depth = pipeline(task="depth-estimation", model=model_id_depth, device="cuda") |
|
else: |
|
pipe_depth = pipeline(task="depth-estimation", model=model_id_depth) |
|
model_id_depth2image = "stabilityai/stable-diffusion-2-depth" |
|
if torch.cuda.is_available(): |
|
pipe_depth2image = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id_depth2image, torch_dtype=torch.float16).to("cuda") |
|
else: |
|
pipe_depth2image = StableDiffusionDepth2ImgPipeline.from_pretrained(model_id_depth2image) |
|
max_seed = np.iinfo(np.int32).max |
|
max_image_size = 1344 |
|
example_files = [os.path.join('assets/examples', filename) for filename in sorted(os.listdir('assets/examples'))] |
|
|
|
|
|
@spaces.GPU |
|
def infer( |
|
init_image, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps): |
|
if randomize_seed: |
|
seed = random.randint(0, max_seed) |
|
init_image = Image.fromarray(np.uint8(init_image)) |
|
predicted_depth = pipe_depth(init_image)["predicted_depth"] |
|
image = pipe_depth2image( |
|
prompt=prompt, |
|
image=init_image, |
|
depth_map=predicted_depth, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
height=height, |
|
width=width, |
|
generator=torch.Generator().manual_seed(seed) |
|
).images[0] |
|
return image, seed |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Demo [Depth2Image](https://huggingface.co/stabilityai/stable-diffusion-2-depth) with depth map estimated by [Depth Anything V2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large-hf)") |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=True, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
with gr.Row(): |
|
init_image = gr.Image(label="Input Image", type='numpy') |
|
result = gr.Image(label="Result") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative Prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=max_seed, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=max_image_size, |
|
step=64, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=max_image_size, |
|
step=64, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=7.5, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=50, |
|
) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit, negative_prompt.submit], |
|
fn=infer, |
|
inputs=[init_image, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs=[result, seed] |
|
) |
|
examples = gr.Examples( |
|
examples=example_files, inputs=[init_image], outputs=[result, seed] |
|
) |
|
demo.queue().launch() |
|
|